MATLAB中的模型预测控制(MPC)实现详解

模型预测控制(MPC)是一种基于模型的优化控制策略,广泛应用于工业过程控制、无人驾驶、机器人等领域。MPC通过预测未来的系统行为,优化控制输入以达到预期的控制目标。本文将详细介绍如何在MATLAB中实现MPC,包括基本原理、模型建立、控制器设计和仿真。

1. MPC的基本原理

MPC的核心思想是使用系统的动态模型来预测未来的行为。控制器在每个控制步骤中解决一个优化问题,以最小化一个代价函数,通常包括状态误差和控制输入的变化。MPC能够处理多输入多输出(MIMO)系统,并且可以考虑输入和输出的约束。

2. 建立系统模型

在MATLAB中,您可以使用Simulink建立系统的动态模型。Simulink是MATLAB的一个模块,提供了图形化的建模环境。

示例代码

A = [1 0.1; -1 2];  % 状态矩阵
B = [0.2 1; 0.5 2];  % 输入矩阵
C = eye(2);         % 输出矩阵
D = zeros(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值