RAG文档解析难点探究:揭秘解析过程中的挑战与解决方案!

 知识库是RAG的灵魂,一个好的知识库能解决绝大部分RAG问题。

在之前关于RAG的优化文章中,大部分都是在强调检索端的优化,而关于文档解析方面的内容却非常的少,而这也是有原因的。

在之前介绍RAG的文章中,曾说过RAG是一种方法论,而不是一项具体的技术;其中有两个比较重要的模块:

  • 其一是与大模型相关的上下文管理

  • 其二是文档召回模块

其中文档召回模块又分为两大块,一块是知识库的构建,另一块是检索召回;而之前的文章主要就是针对检索召回和上下文管理。

图片

而今天所讨论的文档解析,就属于知识库的构建,而这也是RAG系统好与坏的基石;一个好的知识库是RAG系统的基础,否则所谓的增强生成只能是空中楼阁。

因为,任何RAG相关的应用场景,在检索召回和上下文管理功能都可以进行复用;或者准确地说,RAG的检索召回和上下文管理的手段就只有这么多。但文档解析却不同,其需要根据不同的业务场景,数据格式进行特殊的处理,而这也是最难搞定的一环。

文档解析

为什么文档解析会那么难?

主要原因就在于文档格式和结构太复杂,特别是现在的富文本,同时包含图片,文字,表格等多种格式的数据;而如果只是格式种类比较多还问题不大,主要是文档内容多结构。

举例来说,你的文档是一个技术架构图,或者流程图等带有结构的数据,这时候你不论选择什么技术都很难进行处理。

图片

以现在常见的OCR技术来说,虽然OCR能够识别出文档中内容,也就是信息;但是它识别不出来文档内容中的结构信息。

从作者个人的体验来看,除了纯文字的文档之外,任何带有结构化信息的文档,经过OCR处理之后,文档中的结构化信息全部丢失,而这对构建知识库来说会产生非常大的影响,甚至会直接导致有些文档完全无效,还不如不要。

所以在RAG中,文档处理的核心主要有以下三点:

  • 提取关键信息

  • 保留文档结构

  • 保证文本质量

提取关键信息

保证文档中重要的数据内容都能被提取出来

保留文档结构

要保证文档的结构,如标题,段落,表格等;因此,作者在处理的过程中,会在每段拆分的文档前面拼接上其上层标题。

保证文本质量

有些人在使用文档格式转换工具或OCR工具之后,就直接把转换之后的文档切分并入库;但事实上这样的文档内容质量会非常差,原因就在于其中会存在很多噪音数据。

如图片,结构图,表格分隔符等,会占用大量的无效空间,导致文档质量直线下降;而这些噪音数据又很难处理,特别是在文档量比较大的情况下。一般情况下只能根据规则或正则表达式对内容进行适当的删除和处理。

因此,在RAG中知识库的构建,也就是文档的处理需要花费大量的时间和精力;然后根据不同的业务场景,选择合适的文档格式和结构,并且选择合适的存储工具;如传统数据库,向量数据库,知识图谱等。

 最后

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。

我整理出这套 AI 大模型突围资料包:

  • ✅AI大模型学习路线图
  • ✅Agent行业报告
  • ✅100集大模型视频教程
  • ✅大模型书籍PDF
  • ✅DeepSeek教程
  • ✅AI产品经理入门资料

如果你也想通过学大模型技术去帮助自己升职和加薪,可以扫描下方链接👇👇
​​
在这里插入图片描述

为什么我要说现在普通人就业/升职加薪的首选是AI大模型?

人工智能技术的爆发式增长,正以不可逆转之势重塑就业市场版图。从DeepSeek等国产大模型引发的科技圈热议,到全国两会关于AI产业发展的政策聚焦,再到招聘会上排起的长队,AI的热度已从技术领域渗透到就业市场的每一个角落。

img
智联招聘的最新数据给出了最直观的印证:2025年2月,AI领域求职人数同比增幅突破200% ,远超其他行业平均水平;整个人工智能行业的求职增速达到33.4%,位居各行业榜首,其中人工智能工程师岗位的求职热度更是飙升69.6%。

AI产业的快速扩张,也让人才供需矛盾愈发突出。麦肯锡报告明确预测,到2030年中国AI专业人才需求将达600万人,人才缺口可能高达400万人,这一缺口不仅存在于核心技术领域,更蔓延至产业应用的各个环节。

在这里插入图片描述

​​
在这里插入图片描述

资料包有什么?

①从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

② AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述

③学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述

④各大厂大模型面试题目详解

在这里插入图片描述
⑤ 这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频教程由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

​​​​在这里插入图片描述
在这里插入图片描述

如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值