Based on Deep Learning (2017, MIT) book.
本文基于Deep Learning (2017, MIT),推导过程补全了所涉及的知识及书中推导过程中跳跃和省略的部分。
blog
1 概述
现代数据集,如网络索引、高分辨率图像、气象学、实验测量等,通常包含高维特征,高纬度的数据可能不清晰、冗余,甚至具有误导性。数据可视化和解释变量之间的关系很困难,而使用这种高维数据训练的神经网络模型往往容易出现过拟合(维度诅咒)。
主成分分析(PCA)是一种简单而强大的无监督机器学习技术,用于数据降维。它旨在从大型变量集中提取一个较小的数据集,同时尽可能保留原始信息和特征(有损压缩)。PCA有助于识别数据集中最显著和有意义的特征,使数据易于可视化。应用场景包括:统计学、去噪和为机器学习算法预处理数据。
- 主成分是什么?
主成分是构建为原始变量的线性组合的新变量。这些新变量是不相关的,并且包含原始数据中大部分的信息。
2 背景数学知识
这些知识对下一节的推导很重要。
- 正交向量和矩阵:
- 如果两个向量垂直,则它们是正交的。即两个向量的点积为零。
- 正交矩阵是一个方阵,其行和列是相互正交的单位向量;每两行和两列的点积为零,每一行和每一列的大小为1。
- 如果AT=A−1或AAT=ATA=I,则A是正交矩阵。
- 在机器人学中,旋转矩阵通常是一个3×3的正交矩阵,在空间变换中它会旋转向量的方向但保持原始向量的大小。
- 矩阵、向量乘法规则:
- (AB)T=BTAT,两个矩阵的乘积的转置。
- a→Tb→=b→Ta→,两个结果都是标量,标量的转置是相同的。
- (A+B)C=AC+BC,乘法是可分配的。
- AB≠BA,乘法一般不满足交换律。
- A(BC)=(AB)C,乘法满足结合律。
- 对称矩阵