最近火爆的Deepseek,让我们再次把本地知识库的搭建提上了日程。
如何使用大模型高效地管理和利用知识,同时解决大模型专业应用方向的能力,成为了迫切需要解决的问题。
RAG(Retrieval-Augmented Generation)增强信息检索和生成模型,能够从大规模知识库中检索相关信息并生成高质量的反馈。
本文将详细介绍如何使用Ollama、Deepseek R1大语音模型、Nomic-Embed-Text向量模型和AnythingLLM共同搭建一个本地的私有RAG知识库。
0. 准备工作
什么是RAG?
RAG是一种结合了信息检索和大模型(LLM)的技术,在对抗大模型幻觉、高效管理用户本地文件以及数据安全保护等方面具有独到的优势。
主要包括:
- 索引:将文档库分割成较短的 Chunk,并通过编码器构建向量索引。
- 检索:根据问题和 chunks 的相似度检索相关文档片段。
- 生成:以检索到的上下文为条件,生成问题的回答。
在开始之前,确保我们需要使用的工具和库:
- Ollama
- Deepseek R1 LLM模型
- Nomic-Embed-Text向量模型
- AnythingLLM
1. 安装 Ollama
Ollama 是一个用于本地运行大型语言模型的工具。
可以通过以下步骤安装 Ollama:
1.1 下载 Ollama
- 访问 Ollama 的 https://ollama.com/官方网站,下载适合你操作系统的安装包。
1.2 安装 Ollama
1.3 验证安装
- 打开终端或命令提示符,输入 ollama --version,确保安装成功。
1.4 Ollama常用命令
2. 配置 DeepSeek R1 模型
2.1 下载 DeepSeek R1 模型
- 从 Ollama的官方网站下载 DeepSeek R1 模型文件。
ollama run deepseek-r1:7b
2.2 启动模型
- 启动和下载模型是同一个命令,如果没有下载过的新模型会直接下载,以及下载过的则直接启动。
ollama run deepseek-r1:7b
3. 配置 Nomic-Embed-Text 模型
3.1 下载 Nomic-Embed-Text 模型
- 从 Ollama的官方网站下载 nomic-embed-text 模型文件。
ollama pull nomic-embed-text
3.2 模型下载完成
4. 安装AnythingLLM
AnythingLLM 是一个功能强大且灵活的开源平台,旨在帮助用户轻松构建和部署基于大型语言模型 (LLM) 的私有化应用程序。
它提供了直观的用户界面、丰富的功能以及高度的可定制性,即使是没有任何编程经验的用户也能快速上手:
- https://anythingllm.com/desktop,登录官网。
- 下载对应的版本
- 打开anythingllm。
5. 搭建RAG本地知识库
现在已经安装并配置好了Ollama、Deepseek R1、Nomic-Embed-Text和AnythingLLM,接下来我们将它们结合起来搭建一个本地的私有RAG知识库。
5.1 数据准备
首先,你需要准备一个知识库数据集。这个数据集可以是一个包含大量文档的目录,也可以是一个预处理的JSON文件。确保每个文档都有一个唯一的ID和文本内容。
我们准备一个Deepseek Janus pro的介绍文档。
5.2 构建索引
使用Nomic-Embed-Text将知识库中的文档转换为向量表示,并构建一个索引:
5.3 检索相关信息
使用Deepseek R1和检索本地向量数据库:
7. 总结
通过本文的介绍,你已经学会了如何搭建一个本地的私有RAG知识库。
这个知识库可以帮助你高效地管理和利用知识,同时增强大模型专业应用方向的能力。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓