G. Game With Triangles: Season 2
思路:
很模板的区间dp
O
(
n
3
)
\mathcal{O}(n^3)
O(n3),转移方程如下:
dp
[
L
,
R
]
=
max
(
max
L
<
i
<
R
(
dp
[
L
+
1
,
i
−
1
]
+
dp
[
i
+
1
,
R
−
1
]
+
score
(
L
,
i
,
R
)
)
,
max
L
≤
i
<
R
(
dp
[
L
,
i
]
+
dp
[
i
+
1
,
R
]
)
)
\text{dp}_{[L,R]}=\max\left( \max_{L < i < R}\left( \text{dp}_{[L+1,i-1]} + \text{dp}_{[i+1,R-1]} + \text{score}(L,i,R) \right), \max_{L \le i < R}\left( \text{dp}_{[L,i]} + \text{dp}_{[i+1,R]} \right) \right)
dp[L,R]=max(L<i<Rmax(dp[L+1,i−1]+dp[i+1,R−1]+score(L,i,R)),L≤i<Rmax(dp[L,i]+dp[i+1,R]))
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define endl '\n'
#define int long long
#define pb push_back
#define pii pair<int, int>
#define FU(i, a, b) for (int i = (a); i <= (b); ++i)
#define FD(i, a, b) for (int i = (a); i >= (b); --i)
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int n;
int a[405];
int dp[405][405]; // L-R区间上的最大val值
int val(int a, int b, int c) { return a * b * c; }
int modn(int x) { return (x + n - 1) % n + 1; }
void solve() {
cin >> n;
FU(i, 1, n) { cin >> a[i]; }
FU(len, 1, n) { // 枚举长度
for (int l = 1; l <= n; l++) { // 枚举左端点
int ans = 0;
int r = modn(l + len - 1); // 枚举右端点
if (len <= 2) { // 长度小于等于2 为0
dp[l][r] = 0;
continue;
}
if (len == 3) {
dp[l][r] = val(a[l], a[modn(l + 1)], a[r]);
continue;
}
for (int i = modn(l + 1); i != r;
i = modn(i + 1)) { // 枚举L+1至R-1上的点i,考虑三角形LiR
int tmp = val(a[l], a[i], a[r]);
if (i != modn(l + 1))
tmp += dp[modn(l + 1)][modn(i - 1)];
if (i != modn(r - 1))
tmp += dp[modn(i + 1)][modn(r - 1)];
ans = max(ans, tmp);
}
for (int i = l; i != r; i = modn(i + 1)) { // 枚举分为两段区间合
ans = max(ans, dp[l][i] + dp[modn(i + 1)][r]);
}
dp[l][r] = ans;
}
}
int res = 0;
for (int i = 1; i <= n; i++) {
res = max(res, dp[i][modn(i + n - 1)]);
}
cout << res << endl;
}
signed main() {
cin.tie(0)->ios::sync_with_stdio(0);
int T = 1;
cin >> T;
while (T--) {
solve();
}
return 0;
}