基于Pytorch框架构建ResNet模型

一、训练模型

1.导入资源包

import torch.optim as optim: 导入PyTorch的优化工具包,其中包括了各种优化算法,如SGD、Adam等。
import torchvision.transforms as transforms: 导入PyTorch的视觉变换工具包,用于对图像进行预处理和变换,如调整大小、裁剪、归一化等。
from torchvision import models: 从torchvision模块中导入预训练的模型,如ResNet、AlexNet、VGG等。

from sched import scheduler
import torch.optim as optim
import torch
import torch.nn as nn
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import torch.optim.lr_scheduler as lr_scheduler
import os
from torchvision import models

2.定义数据预处理

这些预处理操作的目的是为了增强模型的泛化能力,并确保模型在训练和验证时输入数据的格式一致。通过这些操作,模型能够接受不同尺寸、角度和方向的图像,从而提高其在实际应用中的表现。同时,归一化处理有助于稳定训练过程,加速模型收敛。,这些预处理操作的目的是为了增强模型的泛化能力,并确保模型在训练和验证时输入数据的格式一致。通过这些操作,模型能够接受不同尺寸、角度和方向的图像,从而提高其在实际应用中的表现。同时,归一化处理有助于稳定训练过程,加速模型收敛。

# 定义数据预处理
transform = {
   
    'train': transforms.Compose([
        transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),
        transforms.RandomRotation(degrees=15),
        transforms.RandomHorizontalFlip(),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406],
                             [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(size=256),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406],
                             [0.229, 0.224, 0.225])
    ])
}

3.读取数据

# 读取数据
dataset = './dataset'
train_directory = os.path.join(dataset, 'train')
valid_directory = os.path.join(dataset, 'val')

batch_size = 32
num_classes = 2  # 修改为您的分类数

data = {
   
    'train': datasets.ImageFolder(root=train_directory, transform=transform['train']),
    'val': datasets.ImageFolder(root=valid_directory, transform=transform['val'])
}

train_loader = DataLoader(data['train'], batch_size=batch_size, shuffle=True, num_workers=8)
test_loader = DataLoader(data['val'], batch_size=batch_size, shuffle=False, num_workers=8)

注:这段代码的主要目的是读取和准备图像数据集,以便用于训练和验证深度学习模型,这段代码设置了数据加载器,它们将在训练和验证过程中提供经过预处理的图像数据。这些数据加载器是PyTorch中用于批量加载数据并使其易于迭代的重要工具。

二、定义卷积神经网络

1.导入必要的库

from torch.autograd import Variable: 从torch.autograd模块中导入Variable类。Variable是PyTorch中自动微分的关键类,它封装了张量,并提供了自动计算梯度等功能。然而,从PyTorch 0.4版本开始,Variable已经被整合到torch.Tensor中,因此不再需要显式地从torch.autograd中导入Variable。在最新的PyTorch版本中,直接使用torch.Tensor即可,它继承了Variable的所有功能。

# 神经网络
import torch
import torch.nn as nn
from torch.autograd import Variable

2.定义名为convolutional_block的卷积块类

这个convolutional_block类定义了一个卷积块,它将输入张量通过两个并行路径(step1和step2),然后将它们的结果相加,并应用ReLU激活函数。这种结构通常用于残差网络(ResNet)中,有助于解决深度网络训练过程中的梯度消失问题。

class convolutional_block(nn.Module):#convolutional_block层
    def __init__(self,cn_input,cn_middle,cn_output,s=2):
        super(convolutional_block,self).__init__()
        self.step1=nn.Sequential(nn.Conv2d(cn_input,cn_middle,(1,1),(s,s),padding=0,bias=False),nn.BatchNorm2d(cn_middle,affine=False),nn.ReLU(inplace=True),
                            nn.Conv2d(cn_middle,cn_middle,(3,3),(1,1),padding=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值