pytorch Resnet 网络结构

本文介绍了ResNet在网络结构上的创新,针对深度学习中训练集准确率下降的问题提出深度残差网络。解释了ResNet中的identity mapping和residual mapping,并分享了在CIFAR10数据集上训练ResNet的代码和网络结构图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在学习廖老师的pytorch教程,学到Resnet 这部分着实的烧脑,这个模型都捣鼓了好长时间才弄懂,附上我学习过程中最为不解的网络的具体结构连接(网上一直没有找到对应网络结构,对与一个自学的学渣般的我,很是无奈,所以搞懂后我就...分享给有需要的的你了)

我们先大致了解一下残差模型

ResNet在2015年被提出,在ImageNet比赛classification任务上获得第一名,因为它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域都纷纷使用ResNet,Alpha zero也使用了ResNet,所以可见ResNet确实很好用。
下面我们从实用的角度去看看ResNet。

1.ResNet意义

随着网络的加深,出现了训练集准确率下降的现象,我们可以确定这不是由于Overfit过拟合造成的(过拟合的情况训练集应该准确率很高);所以作者针对这个问题提出了一种全新的网络,叫深度残差网络,它允许网络尽可能的加深,其中引入了全新的结构如图1;
这里问大家一个问题
残差指的是什么
其中ResNet提出了两种mapping:一种是identity mapping,指的就是图1中”弯弯的曲线”,另一种residual mapping,指的就是除了”弯弯的曲线“那部分,所以最后的输出是 y=F(x)+x


identity mapping顾名思义,就是指本身,也就是公式中的x,而residual mapping指的是“”,也就是y−x,所以残差指的就是F(x)部分。

 

 我们可以看到一个“弯弯的弧线“这个就是所谓的”shortcut connection“,也是文中提到identity mapping,这张图也诠释了ResNet的真谛,当然残差的结构可不会像图中这样单一,

下面是对通过Resnet 对cafir10数据的训练代码 以及网络结构图

import torch
import torch.nn as nn
import torchvision.datasets as normal_datasets
import torchvision.transforms as transforms
from torch.autograd import Variable

num_epochs = 2
lr = 0.001


def get_variable(x):
    x = Variable(x)
    return x.cuda() if torch.cuda.is_available() else x


# 图像预处理
transform = transforms.Compose([
    transforms.Scale(40),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor()])

# 加载CIFAR-10
train_dataset = normal_datasets.CIFAR10(root='./data/',
                                        train=True,
                                        transform=transform,
                                        download=False)

test_dataset = normal_datasets.CIFAR10(root='./data/',
                                       train=False,
ResNet是一种深度残差网络,可以有效地训练非常深的神经网络。下面是一个使用PyTorch实现ResNet-50的示例代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class ResNet(nn.Module): def __init__(self, num_classes=1000): super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(64, 3) self.layer2 = self._make_layer(128, 4, stride=2) self.layer3 = self._make_layer(256, 6, stride=2) self.layer4 = self._make_layer(512, 3, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * 4, num_classes) def _make_layer(self, planes, blocks, stride=1): downsample = None if stride != 1 or planes != 64: downsample = nn.Sequential( nn.Conv2d(64, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes), ) layers = [ResidualBlock(64, planes, stride, downsample)] for i in range(1, blocks): layers.append(ResidualBlock(planes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class ResidualBlock(nn.Module): def __init__(self, in_planes, planes, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out ``` 在这个示例代码中,我们定义了一个名为ResNet的类,它继承自PyTorch中的nn.Module类。ResNet类包含了ResNet-50的所有层,并且我们可以使用它来进行训练和推理。 ResNet类的构造函数中定义了各个层的结构,包括卷积层、池化层、批归一化层、全连接层等。其中,_make_layer函数用于创建残差块,ResidualBlock类定义了残差块的结构。 在ResNet类的forward函数中,我们按照ResNet的结构依次调用各个层,并将输出传递给下一层。最终,我们使用全局平均池化层和一个全连接层来输出分类结果。 这个实现示例可以处理3通道的图像,输出1000个类别的预测结果。如果需要处理其他类型的数据,可以根据实际情况进行修改。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值