本课程通过建立自动驾驶汽车的应用主题,介绍深度学习的实践。它对初学者开放,是为那些刚接触机器学习的人设计的,但它也可以帮助现场的高级研究人员寻找深度学习方法及其应用的实用概述。
对班级感兴趣吗?这里有一些你可以做的事情:
- 在网站上注册一个帐户以保持最新。课程的材料是免费的,向公众开放。
- 按照DeepTraffic和DeepTesla教程,签出DeepTraffic排行榜。
- 为DeepTraffic游戏和DeepTesla模拟模拟设计和评估神经网络。
- 观看下面的讲座和客座讲座。
课程资料:
- 首次提供: 2017年冬季
- 教练: Lex Fridman
- 联系人: deepcars@mit.edu
讲座幻灯片和视频:
* 标记为红色的材料表示尚未激活但即将发生的链接。
- 讲座1:深度学习和自驾车介绍
[ 幻灯片 ] - [ 演讲视频 ] - 讲座2:运动计划的深层加固学习
[ 幻灯片 ] - [ 演讲视频 ] - 讲座3:驾驶任务的端到端学习的卷积神经网络
[ 幻灯片 ] - [ 演讲视频 ] - 讲座4:通过时间转向的循环神经网络
[ 幻灯片 ] - [ 演讲视频 ] - 讲座5:以人为中心的半自主车辆的深度学习
[ 幻灯片 ] - [ 讲座视频 ]
客人说话:
十分感谢
本课程的支持由MIT-SUTD和丰田集体行动解决安全研究和教育计划的良好人士提供。比赛的奖品由我们的朋友和Udacity的自驾驾驶汽车工程师提供。如果没有麻省理工学院及其以外的聪明年轻人的伟大社区,也不可能有这样的机会。
本课程分别介绍了MIT的自驾车深度学习及CMU的深度强化学习与控制,涵盖深度学习在自动驾驶中的应用、强化学习原理及其实现等内容。











432

被折叠的 条评论
为什么被折叠?



