BlogTest

本文分享了作者从零开始搭建个人博客的经历,并详细介绍了使用Hexo+Github进行部署的具体步骤,包括环境配置、主题选择及插件安装等。

闲聊

在大三的时候,一直就想搭建属于自己的一个博客,但由于各种原因,最终都不了了之,恰好最近比较有空,于是就自己参照网上的教程,搭建了属于自己的博客。

至于为什么要搭建自己的博客了?

哈哈,大概是为了装逼吧,同时自己搭建博客的话,样式的选择也比较自由,可以自己选择,不需要受限于各大平台。

转载请注明原博客地址:手把手教你用Hexo+Github 搭建属于自己的博客

大概可以分为以下几个步骤

  1. 搭建环境准备(包括node.js和git环境,gitHub账户的配置)
  2. 安装Hexo
  3. 配置Hexo
  4. 怎样将Hexo与github page 联系起来
  5. 怎样发布文章
  6. 主题 推荐
  7. 主题Net的简单配置
  8. 添加sitemap和feed插件

  1. 添加404 公益页面

搭建环境准备

大概可以分为以下三步 
Node.js 的安装和准备 
Git的安装和准备 
- gitHub账户的配置

配置Node.js环境

  1. 下载Node.js安装文件:

根据自己的Windows版本选择相应的安装文件,要是不知道,就安装32-bit的吧- -。 如图所示:

保持默认设置即可,一路Next,安装很快就结束了。 然后我们检查一下是不是要求的组件都安装好了,同时按下Win和R,打开运行窗口:

Windows的运行界面


本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值