poj3219--Binomial Coefficients

本文详细介绍了如何通过计算阶乘中含2的因子个数来判断C(n,m)的奇偶性,提供了一个简洁高效的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

The binomial coefficient C(n, k) has been extensively studied for its importance in combinatorics. Binomial coefficients can be recursively defined as follows:

C(n, 0) = C(n, n) = 1 for all n > 0;
C(n, k) = C(n − 1, k − 1) + C(n − 1, k) for all 0 < k < n.

Given n and k, you are to determine the parity of C(n, k).

Input

The input contains multiple test cases. Each test case consists of a pair of integers n and k (0 ≤ kn < 231, n > 0) on a separate line.

End of file (EOF) indicates the end of input.

Output

For each test case, output one line containing either a “0” or a “1”, which is the remainder of C(n, k) divided by two.

Sample Input

1 1
1 0
2 1

Sample Output

1
1
0

/////////////////////////////////////////////////////////////////

题意是判断C(n,m)是奇数还是偶数

# include<stdio.h>

int fuan(int n)

{

       int sum=0;

       while(n>=2)

       {

              sum+=n/2;

              n=n/2;

       }

       return sum;

}

int main()

{

       int x,y,a,b,c;

       while(scanf("%d%d",&x,&y)!=EOF)

       {

              a=b=c=0;

              a=fuan(x);

              b=fuan(y);

              c=fuan(x-y);

              if(a>b+c)

                     printf("0\n");

              else

                     printf("1\n");

       }

       return 0;

}

 主要是看n!中含2的因子个数与(n-m)!,m!中含2因子个数和的比较!

 

求n的阶乘中含i的因子个数;

count=0;

while(n>=i)
{

count+=n/i;

n/=i;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值