Keras 在fit-generator中获取验证数据的y_true和y_preds

在Keras网络训练过程中,fit-generator为我们提供了很多便利。调用fit-generator时,每个epoch训练结束后会使用验证数据检测模型性能,Keras使用model.evaluate_generator提供该功能。然而我遇到了需要提取验证集y_pred的需求,在网上没有找到现有的功能实现方法,于是自己对源码进行了微调,实现了可配置提取验证集模型预测结果的功能,记录如下。

原理简介

通过查看源代码,发现Keras调用了model.evaluate_generator验证数据,该函数最终调用的是TensorFlow(我用的后端是tf)的TF_SessionRunCallable函数,封装得很死,功能是以数据为输入,输出模型预测的结果并与真实标签比较并计算评价函数得到结果。

过程中不保存、不返回预测结果,这部分没有办法修改,但可以在评价数据的同时对数据进行预测,得到结果并记录下来,传入到epoch_logs中,随后在回调函数的on_epoch_end中尽情使用

代码修改

  • Keras版本 2.2.4 其他版本不保证一定使用相同的方法,但大体思路不变

model.fit_generator

找到fit_generator函数定义位置,加入控制参数get_predict

def fit_generator(self, generator,
                      steps_per_epoch=None,
                      epochs=1,
                      verbose=1,
                      callbacks=None,
                      validation_data=None,
                      validation_steps=None,
                      class_weight=None,
                      max_queue_size=10,
                      workers=1,
                      use_multiprocessing=False,
                      shuffle=True,
                      initial_epoch=0,
                      get_predict = False):    # 加入 get_predict
return training_generator.fit_generator(
            self, generator,
            steps_per_epoch=steps_per_epoch,
            epochs=epochs,
            verbose=verbose,
            callbacks=callbacks,
            validation_data=validation_data,
            validation_steps=validation_steps,
            class_weight=class_weight,
            max_queue_size=max_queue_size,
            workers=workers,
            use_multiprocessing=use_multiprocessing,
            shuffle=shuffle,
            initial_epoch=initial_epoch,
            get_predict = get_predict) # 加入 get_predict

training_generator.fit_generator

找到training_generator.fit_generator定义位置,加入get_predict:

def fit_generator(model,
                  generator,
                  steps_per_epoch=None,
                  epochs=1,
                  verbose=1,
                  callbacks=None,
                  validation_data=None,
                  validation_steps=None,
                  class_weight=None,
                  max_queue_size=10,
                  workers=1,
                  use_multiprocessing=False,
                  shuffle=True,
                  initial_epoch=0,
                  get_predict = False): # 加入 get_predict

修改 # Epoch finished. 注释后的模块,可以看到Keras中fit_generator就是用model.evaluate_generator对验证集评估的:

# Epoch finished.
if steps_done >= steps_per_epoch and do_validation:
    if val_gen:
        
        if get_predict:
            ## 如果启动获取预测结果功能,那么将get_predict设置为True
            ## 返回值会包括 gts_and_preds 
            val_outs, gts_and_preds = model.evaluate_generator(
                val_enqueuer_gen,
                validation_steps,
                workers=0,
                get_predict=get_predict)
        else:
            val_outs = model.evaluate_generator(
                val_enqueuer_gen,
                validation_steps,
                workers=0)                            
    else:
        # No need for try/except because
        # data has already been validated.
        val_outs = model.evaluate(
            val_x, val_y,
            batch_size=batch_size,
            sample_weight=val_sample_weights,
            verbose=0)
    val_outs = to_list(val_outs)
    # Same labels assumed.
    for l, o in zip(out_labels, val_outs):
        epoch_logs['val_' + l] = o
    
    ## 将返回值 gts_and_preds 保存到 log 中
    if get_predict:
        epoch_logs['val_gts_and_preds'] = gts_and_preds
        
if callback_model.stop_training:
    break

model.evaluate_generator

进入model.evaluate_generator函数,加入get_predict变量:

    def evaluate_generator(self, generator,
                           steps=None,
                           max_queue_size=10,
                           workers=1,
                           use_multiprocessing=False,
                           verbose=0,
                           get_predict=False): # 加入get_predict变量
return training_generator.evaluate_generator(
            self, generator,
            steps=steps,
            max_queue_size=max_queue_size,
            workers=workers,
            use_multiprocessing=use_multiprocessing,
            verbose=verbose,
            get_predict=get_predict) # 加入get_predict变量

training_generator.evaluate_generator

进入training_generator.evaluate_generator,添加get_predict变量,新建三个变量:

def evaluate_generator(model, generator,
                       steps=None,
                       max_queue_size=10,
                       workers=1,
                       use_multiprocessing=False,
                       verbose=0,
                       get_predict=False):  # 加入get_predict变量
    """See docstring for `Model.evaluate_generator`."""
    model._make_test_function()

    if hasattr(model, 'metrics'):
        for m in model.stateful_metric_functions:
            m.reset_states()
        stateful_metric_indices = [
            i for i, name in enumerate(model.metrics_names)
            if str(name) in model.stateful_metric_names]
    else:
        stateful_metric_indices = []

    steps_done = 0
    wait_time = 0.01
    outs_per_batch = []
    batch_sizes = []
      
    if get_predict:
        preds_dict={} # 新建保存结果的dict
        gt_per_batch = [] # 新建 y_true 的 list
        pr_per_batch = [] # 新建 y_pred 的 list

在核心循环while steps_done < steps:中加入预测变量的内容:

while steps_done < steps:
            generator_output = next(output_generator)
            if not hasattr(generator_output, '__len__'):
                raise ValueError('Output of generator should be a tuple '
                                 '(x, y, sample_weight) '
                                 'or (x, y). Found: ' +
                                 str(generator_output))
            if len(generator_output) == 2:
                x, y = generator_output
                sample_weight = None
            elif len(generator_output) == 3:
                x, y, sample_weight = generator_output
            else:
                raise ValueError('Output of generator should be a tuple '
                                 '(x, y, sample_weight) '
                                 'or (x, y). Found: ' +
                                 str(generator_output))
            outs = model.test_on_batch(x, y, sample_weight=sample_weight)
            outs = to_list(outs)
            outs_per_batch.append(outs)
            
            ## 加入预测功能,保存preds和y_true
            if get_predict:
                preds = model.predict_on_batch(x)
                gt_per_batch.append(y.tolist())
                pr_per_batch.append(preds.tolist())

            if x is None or len(x) == 0:
                # Handle data tensors support when no input given
                # step-size = 1 for data tensors
                batch_size = 1
            elif isinstance(x, list):
                batch_size = x[0].shape[0]
            elif isinstance(x, dict):
                batch_size = list(x.values())[0].shape[0]
            else:
                batch_size = x.shape[0]
            if batch_size == 0:
                raise ValueError('Received an empty batch. '
                                 'Batches should contain '
                                 'at least one item.')
            steps_done += 1
            batch_sizes.append(batch_size)
            if verbose == 1:
                progbar.update(steps_done)
        ## 将结果保存到dict中
        if get_predict:
            preds_dict['y_true'] = gt_per_batch
            preds_dict['y_pred'] = pr_per_batch

修改返回值:

    if get_predict:
        return unpack_singleton(averages), preds_dict
    
    else:
        return unpack_singleton(averages)

至此核心的功能已经实现,但还有一个小问题。

keras.callbacks.TensorBoard._write_logs

Keras的Tensorboard会记录logs中的内容,但是他只认识 int, float 等数值格式,我们保存在log中的复杂字典他没办法写入tesnorboard,需要对_write_logs做微小的调整:

def _write_logs(self, logs, index):
        for name, value in logs.items():
            if name in ['batch', 'size']:
                continue
            summary = tf.Summary()
            summary_value = summary.value.add()
            if isinstance(value, np.ndarray):
                summary_value.simple_value = value.item()
            ## 跳过我们生成的字典
            elif isinstance(value, dict):
                pass
            else:
                summary_value.simple_value = value
            summary_value.tag = name
            self.writer.add_summary(summary, index)
        self.writer.flush()

大功告成!

测试

随便写个带on_epoch_end的回调函数,将get_predict设置为True,测试logs中是否有我们想要的数据:

 model.fit_generator(
        generator = train_data_generator,
        steps_per_epoch = 10,
        epochs = config.Epochs,
        verbose = 1,
        use_multiprocessing=False,
        validation_data=val_data_generator,
        validation_steps=10,
        callbacks = callbacks,
        get_predict= True
    )      

回调函数设断点,输出logs:

logs['val_gts_and_preds']
{'y_pred': [[[2.5419962184969336e-05, 0.9999746084213257],
             [0.6694663763046265, 0.33053362369537354],
             [0.3561754524707794, 0.643824577331543]],
            [[5.548826155499231e-12, 1.0],
             [2.701560219975363e-08, 1.0],
             [4.0011427699937485e-06, 0.9999959468841553]],
            [[7.97858723533551e-11, 1.0],
             [2.3924835659272503e-06, 0.999997615814209],
             [3.359668880875688e-07, 0.9999996423721313]],
            [[0.06622887402772903, 0.9337711930274963],
             [4.1211248458239425e-07, 0.9999996423721313],
             [8.561290087527595e-06, 0.9999914169311523]],
            [[9.313887403550325e-07, 0.9999990463256836],
             [2.614793537247806e-08, 1.0],
             [8.66139725985704e-06, 0.9999912977218628]],
            [[7.047830763440288e-09, 1.0],
             [0.010548637248575687, 0.9894513487815857],
             [1.8744471252940542e-10, 1.0]],
            [[8.760089875714527e-11, 1.0],
             [0.0015734446933493018, 0.9984265565872192],
             [1.5642463040421717e-06, 0.9999984502792358]],
            [[0.004750440828502178, 0.9952495098114014],
             [6.984401466070267e-07, 0.9999992847442627],
             [0.00013592069444712251, 0.9998641014099121]],
            [[7.22906318140204e-11, 1.0],
             [2.402198795437016e-08, 1.0],
             [9.673745138272238e-10, 1.0]],
            [[3.1848256298872e-07, 0.9999996423721313],
             [0.0035940599627792835, 0.9964058995246887],
             [1.9458911912351162e-11, 1.0]]],
 'y_true': [[[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]],
            [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]]}

之后这些结果任君处置了;

get_predict设为 False 时则屏蔽了我们做出的所有修改,与原始Keras代码完全相同;

目前没有发现其他的问题,有任何不对头可以随时交流。

下面是使用Keras4bert框架实现对输入数据进行预测的整体代码: ```python import numpy as np from keras4bert.models import build_transformer_model from keras4bert.layers import MaskedSoftmax from keras4bert.tokenizers import Tokenizer from keras4bert.optimizers import AdamWarmup from keras4bert.callbacks import ModelCheckpoint # 1. 定义模型参数 maxlen = 128 num_classes = 2 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' dropout_rate = 0.1 attention_dropout_rate = 0.1 initializer_range = 0.02 learning_rate = 2e-5 weight_decay_rate = 0.01 num_warmup_steps = 10000 num_train_steps = 100000 batch_size = 32 # 2. 加载预训练模型 model = build_transformer_model( config_path='path/to/bert_config.json', checkpoint_path='path/to/bert_model.ckpt', model='bert', num_classes=num_classes, application='sequence_classification', mask_zero=True, with_pool=True, return_keras_model=False, name='BertModel' ) # 3. 构建训练数据生成器 tokenizer = Tokenizer('path/to/vocab.txt') def data_generator(data, batch_size): """数据生成器""" batch_token_ids, batch_segment_ids, batch_labels = [], [], [] while True: for token_ids, label in data: batch_token_ids.append(token_ids) batch_segment_ids.append([0] * maxlen) batch_labels.append(label) if len(batch_token_ids) == batch_size: batch_token_ids = tokenizer.pad_sequences(batch_token_ids, maxlen=maxlen) batch_segment_ids = tokenizer.pad_sequences(batch_segment_ids, maxlen=maxlen) batch_labels = np.array(batch_labels) yield [batch_token_ids, batch_segment_ids], batch_labels batch_token_ids, batch_segment_ids, batch_labels = [], [], [] # 4. 编译模型 model.compile( loss='sparse_categorical_crossentropy', optimizer=AdamWarmup( decay_steps=num_train_steps, warmup_steps=num_warmup_steps, lr=learning_rate, min_lr=1e-7, weight_decay_rate=weight_decay_rate, exclude_from_weight_decay=['Norm', 'bias'] ), metrics=['accuracy'] ) # 5. 开始训练 train_data = [(token_ids, label) for token_ids, label in zip(train_token_ids, train_labels)] valid_data = [(token_ids, label) for token_ids, label in zip(valid_token_ids, valid_labels)] train_steps = len(train_data) // batch_size valid_steps = len(valid_data) // batch_size callbacks = [ ModelCheckpoint( filepath='path/to/best_model.h5', save_weights_only=True, save_best_only=True, monitor='val_accuracy', mode='max', verbose=1 ) ] model.fit_generator( generator=data_generator(train_data, batch_size), steps_per_epoch=train_steps, epochs=num_train_steps, validation_data=data_generator(valid_data, batch_size), validation_steps=valid_steps, callbacks=callbacks ) # 6. 预测新数据 test_token_ids = tokenizer.texts_to_sequences(test_texts) test_token_ids = tokenizer.pad_sequences(test_token_ids, maxlen=maxlen) test_preds = model.predict([test_token_ids, np.zeros_like(test_token_ids)]) test_preds = np.argmax(test_preds, axis=1) ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值