Basics of Matrix Theory
Noted by Yuanshuai
- Transpose:
(AB)T=BTAT(AT)T=A(A+B)T=AT+BT (AB)^T = B^T A^T \\ (A^T)^T = A\\ (A+B)^T = A^T + B^T (AB)T=BTAT(AT)T=A(A+B)T=AT+BT
- Hermitian transpose: nearly the same as transpose.
- Trace:
tr(A)=∑i=1naiitr(AT)=tr(A)tr(A+B)=tr(A)+tr(B)tr(AB)=tr(BA)for A,B of appropriate sizes tr(A) = \sum_{i = 1}^{n} a_{ii}\\ tr(A^T) = tr(A)\\ tr(A+B) = tr(A) + tr(B)\\ tr(AB) = tr(BA)\quad \text{for A,B of appropriate sizes} tr(A)=i=1∑naiitr(AT)=tr(A)tr(A+B)=tr(A)+tr(B)tr(AB)=tr(BA)for A,B of appropriate sizes
- Matrix power:
Ak=AAA⋯A A^k = AAA\cdots A Ak=AAA⋯A
-
Unit vectors: a vector that has only one nonzero element and the nonzero element is 1. Notation: ei=[0⋯010⋯0]e_i = [0 \cdots 0 1 0 \cdots 0]ei=[0⋯010⋯0]
-
Identity matrix
I=Diag(1,1,1,⋯ ,1) I = Diag(1,1,1,\cdots,1) I=Diag(1,1,1,⋯,1)
- Subspace:
for x,y∈S,α,β∈R⇒αx+βy∈S \text{for } x,y\in S, \alpha,\beta \in \mathcal{R} \Rightarrow \alpha x + \beta y \in S for x,y∈S,α,β∈R⇒αx+βy∈S
- Span:
span{a1,⋯ ,an}={y∈Rm∣y=∑i=1nαiai,α∈Rn} span\{a_1,\cdots,a_n\} = \{y \in \mathcal{R}^m | y = \sum_{i=1}^{n} \alpha_i a_i, \alpha \in \mathcal{R}^n\} span{a1,⋯,an}={y∈Rm∣y=i=1∑nαiai,α∈Rn}
- Range space of A:
R(A)={y∈Rm∣y=Ax,x∈Rn} R(A) = \{y \in \mathcal{R}^m | y = Ax, x \in \mathcal{R}^n\} R(A)={y∈Rm∣y=Ax,x∈Rn}
- Null space of A:
N(A)={x∈Rn∣Ax=0} N(A) = \{x \in \mathcal{R}^n | Ax = 0\} N(A)={x∈Rn∣Ax=0}
- Linearly independent if
∑i=1nαiai≠0,for all α∈Rn with α≠0 \sum_{i=1}^{n} \alpha_i a_i \neq 0, \text{for all }\alpha \in \mathcal{R}^n \text{ with } \alpha \neq 0 i=1∑nαiai=0,for all α∈Rn with α=0
-
Dimension of a subspace
- if S1⊆S2S_1 \subseteq S_2S1⊆S2, then dimS1≤dimS2\dim S_1 \leq \dim S_2dimS1≤dimS2
- if S1⊆S2S_1 \subseteq S_2S1⊆S2 and dimS1≤dimS2\dim S_1 \leq \dim S_2dimS1≤dimS2, then S1=S2S_1 = S_2S1=S2
- dim(S1+S2)≤dimS1+dimS2\dim (S_1+S_2)\leq \dim S_1 + \dim S_2dim(S1+S2)≤dimS1+dimS2
- dim(S1+S2)=dimS1+dimS2−dim(S1∩S2)\dim(S_1+S_2) = \dim S_1 + \dim S_2 - \dim (S_1 \cap S_2)dim(S1+S2)=dimS1+dimS2−dim(S1∩S2)
-
Rank
- rank(AB)≤rand(A)+rank(B)rank(AB) \leq rand(A) + rank(B)rank(AB)≤rand(A)+rank(B)
-
Invertible
(AB)−1=B−1A−1(AT)−1=(A−1)T (AB)^{-1} = B^{-1} A^{-1}\\ (A^T)^{-1} = (A^{-1})^T (AB)−1=B−1A−1(AT)−1=(A−1)T
- Determinant
det(AB)=det(A)det(B)det(αA)=αmdet(A)det(A−1)=1/det(A)det(B−1AB)=det(A) for any nonsingular B \det (AB) = \det (A) \det (B)\\ \det(\alpha A) = \alpha ^m \det (A)\\ \det(A^{-1}) = 1/\det(A)\\ \det(B^{-1}AB) = \det(A) \text{ for any nonsingular }B\\ det(AB)=det(A)det(B)det(αA)=αmdet(A)det(A−1)=1/det(A)det(B−1AB)=det(A) for any nonsingular B
-
Determinant
-
if AAA is triangular, either upper or lower
-
det(A)=∏i=1maii \det(A) = \prod_{i=1}^{m}a_{ii} det(A)=i=1∏maii
-
if AAA takes a block upper triangular form
-
KaTeX parse error: Undefined control sequence: \matrix at position 13: A = \left[ \̲m̲a̲t̲r̲i̲x̲{B & C\\ 0 & D}…
where BBB and DDD are square, then
det(A)=det(B)det(D) \det(A) = \det(B)\det(D) det(A)=det(B)det(D)
-
-
Cauchy-Schwartz inequality
∣xTy∣≤∥x∥2∥y∥2 |x^T y|\leq \|x\|_2 \|y\|_2 ∣xTy∣≤∥x∥2∥y∥2
- Holder inequality
∣xTy∣≤∥x∥p∥y∥pfor any p,q such that 1/p+1/q=1,p≥1 |x^T y|\leq \|x\|_p \|y\|_p \\ \text{for any p,q such that } 1/p+1/q = 1, p\geq 1 ∣xTy∣≤∥x∥p∥y∥pfor any p,q such that 1/p+1/q=1,p≥1
- A projection of yyy onto SSS is any solution to
minz∈S∥z−y∥22 \min_{z\in S} \|z-y\|_2^2 z∈Smin∥z−y∥22
- Orthogonal complement of S is defined as
S⊥={y∈Rm∣zTy=0} for all z∈S S^{\perp} = \{y\in \mathcal R^m | z^T y = 0 \} \text{ for all } z \in S S⊥={y∈Rm∣zTy=0} for all z∈S
-
Properties of S⊥S^{\perp}S⊥
- R(A)⊥=N(AT)N(A)=R(AT)⊥ProjectionS⊥(y)=y−ProjectionS(y)S+S⊥=RmdimS+dimS⊥=m(S⊥)⊥=S R(A)^{\perp} = N(A^T)\\ N(A) = R(A^T)^{\perp} \\ Projection_{S^\perp}(y) = y - Projection_S(y) \\ S+S^\perp = \mathcal R^m\\ \dim S + \dim S^\perp = m\\ (S^\perp)^\perp = S R(A)⊥=N(AT)N(A)=R(AT)⊥ProjectionS⊥(y)=y−ProjectionS(y)S+S⊥=RmdimS+dimS⊥=m(S⊥)⊥=S
-
Orthogonal if aiTaj=0a_i^T a_j = 0aiTaj=0 for all i,ji,ji,j with i≠ji \neq ji=j
-
Orthonormal if ∥ai∥2=1\|a_i\|_2 = 1∥ai∥2=1 for all iii and aiTaj=0a_i^T a_j = 0aiTaj=0 for all i,ji,ji,j with i≠ji \neq ji=j
-
A real matrix Q is said to be
-
orthogonal: if it is square and its columns are orthonormal
- QTQ=IQQT=I∥Qx∥2=∥x∥2 Q^T Q = I\\ Q Q^T = I\\ \|Qx\|_2 = \|x\|_2 QTQ=IQQT=I∥Qx∥2=∥x∥2
-
semi-orthogonal if its columns are orthonormal
-
QTQ=I Q^T Q = I QTQ=I
-
-
-
A complex matrix Q is said to be
- unitary (similar as orthogonal)
- semi-unitary (similar as semi-orthogonal)
本文介绍了矩阵理论的基本概念,包括转置、Hermitian转置、迹、矩阵幂等运算的定义及性质;阐述了单位向量、恒等矩阵的概念;解释了子空间、生成空间、范围空间、零空间的概念;讨论了线性独立性、子空间维度及其相关性质;介绍了秩、可逆矩阵、行列式的定义及性质;并探讨了正交性和单位性的概念。
2489

被折叠的 条评论
为什么被折叠?



