Basics of Matrix Theory
Noted by Yuanshuai
- Transpose:
( A B ) T = B T A T ( A T ) T = A ( A + B ) T = A T + B T (AB)^T = B^T A^T \\ (A^T)^T = A\\ (A+B)^T = A^T + B^T (AB)T=BTAT(AT)T=A(A+B)T=AT+BT
- Hermitian transpose: nearly the same as transpose.
- Trace:
t r ( A ) = ∑ i = 1 n a i i t r ( A T ) = t r ( A ) t r ( A + B ) = t r ( A ) + t r ( B ) t r ( A B ) = t r ( B A ) for A,B of appropriate sizes tr(A) = \sum_{i = 1}^{n} a_{ii}\\ tr(A^T) = tr(A)\\ tr(A+B) = tr(A) + tr(B)\\ tr(AB) = tr(BA)\quad \text{for A,B of appropriate sizes} tr(A)=i=1∑naiitr(AT)=tr(A)tr(A+B)=tr(A)+tr(B)tr(AB)=tr(BA)for A,B of appropriate sizes
- Matrix power:
A k = A A A ⋯ A A^k = AAA\cdots A Ak=AAA⋯A
-
Unit vectors: a vector that has only one nonzero element and the nonzero element is 1. Notation: e i = [ 0 ⋯ 010 ⋯ 0 ] e_i = [0 \cdots 0 1 0 \cdots 0] ei=[0⋯010⋯0]
-
Identity matrix
I = D i a g ( 1 , 1 , 1 , ⋯ , 1 ) I = Diag(1,1,1,\cdots,1) I=Diag(1,1,1,⋯,1)
- Subspace:
for x , y ∈ S , α , β ∈ R ⇒ α x + β y ∈ S \text{for } x,y\in S, \alpha,\beta \in \mathcal{R} \Rightarrow \alpha x + \beta y \in S for x,y∈S,α,β∈R⇒αx+βy∈S
- Span:
s p a n { a 1 , ⋯ , a n } = { y ∈ R m ∣ y = ∑ i = 1 n α i a i , α ∈ R n } span\{a_1,\cdots,a_n\} = \{y \in \mathcal{R}^m | y = \sum_{i=1}^{n} \alpha_i a_i, \alpha \in \mathcal{R}^n\} span{a1,⋯,an}={y∈Rm∣y=i=1∑nαiai,α∈Rn}
- Range space of A:
R ( A ) = { y ∈ R m ∣ y = A x , x ∈ R n } R(A) = \{y \in \mathcal{R}^m | y = Ax, x \in \mathcal{R}^n\} R(A)={y∈Rm∣y=Ax,x∈Rn}
- Null space of A:
N ( A ) = { x ∈ R n ∣ A x = 0 } N(A) = \{x \in \mathcal{R}^n | Ax = 0\} N(A)={x∈Rn∣Ax=0}
- Linearly independent if
∑ i = 1 n α i a i ≠ 0 , for all α ∈ R n with α ≠ 0 \sum_{i=1}^{n} \alpha_i a_i \neq 0, \text{for all }\alpha \in \mathcal{R}^n \text{ with } \alpha \neq 0 i=1∑nαiai=0,for all α∈Rn with α=0
-
Dimension of a subspace
- if S 1 ⊆ S 2 S_1 \subseteq S_2 S1⊆S2, then dim S 1 ≤ dim S 2 \dim S_1 \leq \dim S_2 dimS1≤dimS2
- if S 1 ⊆ S 2 S_1 \subseteq S_2 S1⊆S2 and dim S 1 ≤ dim S 2 \dim S_1 \leq \dim S_2 dimS1≤dimS2, then S 1 = S 2 S_1 = S_2 S1=S2
- dim ( S 1 + S 2 ) ≤ dim S 1 + dim S 2 \dim (S_1+S_2)\leq \dim S_1 + \dim S_2 dim(S1+S2)≤dimS1+dimS2
- dim ( S 1 + S 2 ) = dim S 1 + dim S 2 − dim ( S 1 ∩ S 2 ) \dim(S_1+S_2) = \dim S_1 + \dim S_2 - \dim (S_1 \cap S_2) dim(S1+S2)=dimS1+dimS2−dim(S1∩S2)
-
Rank
- r a n k ( A B ) ≤ r a n d ( A ) + r a n k ( B ) rank(AB) \leq rand(A) + rank(B) rank(AB)≤rand(A)+rank(B)
-
Invertible
( A B ) − 1 = B − 1 A − 1 ( A T ) − 1 = ( A − 1 ) T (AB)^{-1} = B^{-1} A^{-1}\\ (A^T)^{-1} = (A^{-1})^T (AB)−1=B−1A−1(AT)−1=(A−1)T
- Determinant
det ( A B ) = det ( A ) det ( B ) det ( α A ) = α m det ( A ) det ( A − 1 ) = 1 / det ( A ) det ( B − 1 A B ) = det ( A ) for any nonsingular B \det (AB) = \det (A) \det (B)\\ \det(\alpha A) = \alpha ^m \det (A)\\ \det(A^{-1}) = 1/\det(A)\\ \det(B^{-1}AB) = \det(A) \text{ for any nonsingular }B\\ det(AB)=det(A)det(B)det(αA)=αmdet(A)det(A−1)=1/det(A)det(B−1AB)=det(A) for any nonsingular B
-
Determinant
-
if A A A is triangular, either upper or lower
-
det ( A ) = ∏ i = 1 m a i i \det(A) = \prod_{i=1}^{m}a_{ii} det(A)=i=1∏maii
-
if A A A takes a block upper triangular form
-
KaTeX parse error: Undefined control sequence: \matrix at position 13: A = \left[ \̲m̲a̲t̲r̲i̲x̲{B & C\\ 0 & D}…
where B B B and D D D are square, then
det ( A ) = det ( B ) det ( D ) \det(A) = \det(B)\det(D) det(A)=det(B)det(D)
-
-
Cauchy-Schwartz inequality
∣ x T y ∣ ≤ ∥ x ∥ 2 ∥ y ∥ 2 |x^T y|\leq \|x\|_2 \|y\|_2 ∣xTy∣≤∥x∥2∥y∥2
- Holder inequality
∣ x T y ∣ ≤ ∥ x ∥ p ∥ y ∥ p for any p,q such that 1 / p + 1 / q = 1 , p ≥ 1 |x^T y|\leq \|x\|_p \|y\|_p \\ \text{for any p,q such that } 1/p+1/q = 1, p\geq 1 ∣xTy∣≤∥x∥p∥y∥pfor any p,q such that 1/p+1/q=1,p≥1
- A projection of y y y onto S S S is any solution to
min z ∈ S ∥ z − y ∥ 2 2 \min_{z\in S} \|z-y\|_2^2 z∈Smin∥z−y∥22
- Orthogonal complement of S is defined as
S ⊥ = { y ∈ R m ∣ z T y = 0 } for all z ∈ S S^{\perp} = \{y\in \mathcal R^m | z^T y = 0 \} \text{ for all } z \in S S⊥={y∈Rm∣zTy=0} for all z∈S
-
Properties of S ⊥ S^{\perp} S⊥
- R ( A ) ⊥ = N ( A T ) N ( A ) = R ( A T ) ⊥ P r o j e c t i o n S ⊥ ( y ) = y − P r o j e c t i o n S ( y ) S + S ⊥ = R m dim S + dim S ⊥ = m ( S ⊥ ) ⊥ = S R(A)^{\perp} = N(A^T)\\ N(A) = R(A^T)^{\perp} \\ Projection_{S^\perp}(y) = y - Projection_S(y) \\ S+S^\perp = \mathcal R^m\\ \dim S + \dim S^\perp = m\\ (S^\perp)^\perp = S R(A)⊥=N(AT)N(A)=R(AT)⊥ProjectionS⊥(y)=y−ProjectionS(y)S+S⊥=RmdimS+dimS⊥=m(S⊥)⊥=S
-
Orthogonal if a i T a j = 0 a_i^T a_j = 0 aiTaj=0 for all i , j i,j i,j with i ≠ j i \neq j i=j
-
Orthonormal if ∥ a i ∥ 2 = 1 \|a_i\|_2 = 1 ∥ai∥2=1 for all i i i and a i T a j = 0 a_i^T a_j = 0 aiTaj=0 for all i , j i,j i,j with i ≠ j i \neq j i=j
-
A real matrix Q is said to be
-
orthogonal: if it is square and its columns are orthonormal
- Q T Q = I Q Q T = I ∥ Q x ∥ 2 = ∥ x ∥ 2 Q^T Q = I\\ Q Q^T = I\\ \|Qx\|_2 = \|x\|_2 QTQ=IQQT=I∥Qx∥2=∥x∥2
-
semi-orthogonal if its columns are orthonormal
-
Q T Q = I Q^T Q = I QTQ=I
-
-
-
A complex matrix Q is said to be
- unitary (similar as orthogonal)
- semi-unitary (similar as semi-orthogonal)