猴子 堆箱子

Problem E

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 20   Accepted Submission(s) : 10
Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.<br><br>The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. <br><br>They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. <br><br>Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.<br>
 

Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,<br>representing the number of different blocks in the following data set. The maximum value for n is 30.<br>Each of the next n lines contains three integers representing the values xi, yi and zi.<br>Input is terminated by a value of zero (0) for n.<br>
 

Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".<br>
 

Sample Input
1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0
 

Sample Output
Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28

Case 4: maximum height = 342

题目大意 这个猴子 需要吃香蕉 需要堆箱子 每个箱子 都要比小面那个 长宽小 求最大高度

dp思路

每个箱子 bool函数按照长度排序然后宽度 。

然后 分为3种情况 插入

一开始想插入箱子进行 排序的时候 重复使用但是 只能用一个类型只能用一次

举个例子

思考了好久 。。。。

举个例子 9 1 8

5 2 6

915 插入的时候有 9 1 5

5 1 9

9 5 1

8 2 6 插入的时候有 8 2 6

6 2 8

6 8 2

这样 排序的时候 就会有 5 6 6 8 9 9

1 2 2 2 1 1 1代表第一组 2代表第二组

当 到 9 时

按照 大小排序 真是好巧 9是最大值 所以 第二个值 肯定小 在前面 如果那个值备选了 后面肯定比他大 真的是好巧

ac代码~

#include<iostream>
#include<string.h>
#include<set>
#include<stdio.h>
#include<vector>
#include<algorithm>
#include<numeric>
#include<math.h>
#include<string.h>
#include<sstream>
#include<stdio.h>
#include<string>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<map>
#include<queue>
#include<iomanip>
#include<cstdio>
using namespace std;
struct paopao
{
    int x,y,z;
}
;
paopao pao[10000];
bool cmp( paopao &A, paopao &B)
{
    if(A.x>B.x)
    return true;
    else if( A.x==B.x&&A.y>B.y)
       return true;
       else
       return false;
}
int dp[1005];
int main()
{
    int n;
    while(cin>>n&&n!=0)
    {    memset(dp,0,sizeof(dp));
        int p=1;
        int a,b,c;
        int i;
        int k=1;
        for(i=1;i<=n;i++)
        {
         cin>>a>>b>>c;
         pao[p].z=a;
         pao[p].x=max(b,c);
         pao[p].y=min(b,c);
         p++;
         pao[p].z=b;
         pao[p].x=max(a,c);
         pao[p].y=min(a,c);
         p++;
         pao[p].z=c;
         pao[p].x=max(a,b);
         pao[p].y=min(a,b);
         p++;
        }
        sort(pao+1,pao+p,cmp);
        for(i=1;i<=p-1;i++)
        {
            dp[i]=pao[i].z;
        }
        int j;
        int maxx=0;
        for(i=2;i<=p-1;i++)
        {
            maxx=0;
            for(j=1;j<i;j++)
            {
                if(pao[i].x>pao[j].x&&pao[i].y>pao[j].y&&dp[j]>maxx) //前三个肯定不满足 dp【j】好巧
                {
                    maxx=dp[j];
                }
            }
            dp[i]=maxx+pao[i].z;
        }
        maxx=-1;
        for(i=1;i<=p-1;i++)
        {
            if(dp[i]>maxx) maxx=dp[i];
        }
        cout<<"Case "<<k++<<": maximum height = ";
        cout<<maxx<<endl;
    }
    return 0;
}



这是一个有趣的场景,我们可以使用MATLAB来模拟猴子利用箱子摘香蕉的过程。这个模拟可以包括猴子的移动、箱子的移动以及摘香蕉的动作。下面是一个简单的MATLAB代码示例,演示了这个过程: ```matlab % 初始化场景 % 定义猴子箱子的初始位置 monkey_pos = [0, 0]; box_pos = [5, 0]; banana_pos = [5, 10]; % 定义场景范围 scene_x = [0, 10]; scene_y = [0, 10]; % 绘制初始场景 figure; axis(scene_x + scene_y); hold on; grid on; title('猴子利用箱子摘香蕉'); xlabel('X轴'); ylabel('Y轴'); % 绘制猴子箱子 monkey = plot(monkey_pos(1), monkey_pos(2), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r'); box = plot(box_pos(1), box_pos(2), 'bs', 'MarkerSize', 10, 'MarkerFaceColor', 'b'); banana = plot(banana_pos(1), banana_pos(2), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g'); % 猴子移动到箱子旁边 monkey_pos = move_to(monkey_pos, box_pos, monkey); set(monkey, 'XData', monkey_pos(1), 'YData', monkey_pos(2)); % 猴子推动箱子到香蕉下方 box_pos = move_to(box_pos, [banana_pos(1), 0], box); set(box, 'XData', box_pos(1), 'YData', box_pos(2)); % 猴子爬上箱子 monkey_pos = [monkey_pos(1), monkey_pos(2) + 1]; set(monkey, 'XData', monkey_pos(1), 'YData', monkey_pos(2)); % 猴子摘香蕉 disp('猴子摘到了香蕉!'); hold off; % 辅助函数:移动到目标位置 function new_pos = move_to(current_pos, target_pos, object) % 简单的线性移动 step = 0.1; distance = target_pos - current_pos; distance_norm = distance / norm(distance); new_pos = current_pos + distance_norm * step; % 更新图形 set(object, 'XData', new_pos(1), 'YData', new_pos(2)); drawnow; % 检查是否到达目标 if norm(new_pos - target_pos) < step new_pos = target_pos; else pause(0.1); new_pos = move_to(new_pos, target_pos, object); end end ``` 这个代码示例中,我们定义了一个简单的场景,包括猴子的位置、箱子的位置和香蕉的位置。我们使用MATLAB的绘图功能来展示猴子的移动、箱子的移动以及最终摘到香蕉的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值