transfomer中Decoder和Encoder的base_layer的源码实现

本专栏主要是深度学习/自动驾驶相关的源码实现,获取全套代码请参考

简介

Encoder和Decoder共同组成transfomer,分别对应图中左右浅绿色框内的部分.
在这里插入图片描述
Encoder:
目的:将输入的特征图转换为一系列自注意力的输出。
工作原理:首先,通过卷积神经网络(CNN)提取输入图像的特征。然后,这些特征通过一系列自注意力的变换层进行处理,每个变换层都会将特征映射进行编码并产生一个新的特征映射。这个过程旨在捕捉图像中的空间和通道依赖关系。
作用:通过处理输入特征,提取图像特征并进行自注意力操作,为后续的目标检测任务提供必要的特征信息。
Decoder:
目的:接受Encoder的输出,并生成对目标类别和边界框的预测。
工作原理:首先,它接收Encoder的输出,然后使用一系列解码器层对目标对象之间的关系和全局图像上下文进行推理。这些解码器层将最终的目标类别和边界框的预测作为输出。
作用:基于Encoder的输出和全局上下文信息,生成目标类别和边界框的预测结果。
总结:Encoder就是特征提取类似卷积;Decoder用于生成box,类似head

源码实现:

Encoder 通常是6个encoder_layer组成,Decoder 通常是6个decoder_layer组成
我实现了核心的BaseTransformerLayer层,可以用来定义encoder_layer和decoder_layer

具体源码及其注释如下,配好环境可直接运行(运行依赖于上一个博客的代码):

import torch
from torch import nn
from ZMultiheadAttention import MultiheadAttention  # 来自上一次写的attension


class FFN(nn.Module):
    def __init__(self,
                 embed_dim=256,
                 feedforward_channels=1024,
                 act_cfg='ReLU',
                 ffn_drop=0.,
                 ):
        super(FFN, self).__init__()
        self.l1 = nn.Linear(in_features=embed_dim, out_features=feedforward_channels)
        if act_cfg == 'ReLU':
            self.act1 = nn.ReLU(inplace=True)
        else:
            self.act1 = nn.SiLU(inplace=True)
        self.d1 = nn.Dropout(p=ffn_drop)
        self.l2 = nn.Linear(in_features=feedforward_channels, out_features=embed_dim)
        self.d2 = nn.Dropout(p=ffn_drop)

    def forward(self, x):
        tmp = self.d1(self.act1(self.l1(x)))
        tmp = self.d2(self.l2(tmp))
        x = tmp + x
        return x


# transfomer encode和decode的最小循环单元,用于打包self_attention或者cross_attention
class BaseTransformerLayer(nn.Module):
    def __init__(self,
                 attn_cfgs=[dict(embed_dim=64, num_heads=4), dict(embed_dim=64, num_heads=4)],
                 fnn_cfg=dict(embed_dim=64, feedforward_channels=128, act_cfg='ReLU', ffn_drop=0.),
                 operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')):
        super(BaseTransformerLayer, self).__init__()
        self.attentions = nn.ModuleList()
        # 搭建att层
        for attn_cfg in attn_cfgs:
            self.attentions.append(MultiheadAttention(**attn_cfg))
        self.embed_dims = self.attentions[0].embed_dim

        # 统计norm数量 并搭建
        self.norms = nn.ModuleList()
        num_norms = operation_order.count('norm')
        for _ in range(num_norms):
            self.norms.append(nn.LayerNorm(normalized_shape=self.embed_dims))

        # 统计ffn数量 并搭建
        self.ffns = nn.ModuleList()
        self.ffns.append(FFN(**fnn_cfg))
        self.operation_order = operation_order

    def forward(self, query, key=None, value=None, query_pos=None, key_pos=None):
        attn_index = 0
        norm_index = 0
        ffn_index = 0
        for order in self.operation_order:
            if order == 'self_attn':
                temp_key = temp_value = query  # 不用担心三个值一样,在attention里面会重映射qkv
                query, attention = self.attentions[attn_index](
                    query,
                    temp_key,
                    temp_value,
                    query_pos=query_pos,
                    key_pos=query_pos)
                attn_index += 1
            elif order == 'cross_attn':
                query, attention = self.attentions[attn_index](
                    query,
                    key,
                    value,
                    query_pos=query_pos,
                    key_pos=key_pos)
                attn_index += 1
            elif order == 'norm':
                query = self.norms[norm_index](query)
                norm_index += 1
            elif order == 'ffn':
                query = self.ffns[ffn_index](query)
                ffn_index += 1
        return query


if __name__ == '__main__':
    query = torch.rand(size=(10, 2, 64))
    key = torch.rand(size=(5, 2, 64))
    value = torch.rand(size=(5, 2, 64))
    query_pos = torch.rand(size=(10, 2, 64))
    key_pos = torch.rand(size=(5, 2, 64))
    # encoder 通常是6个encoder_layer组成 每个encoder_layer['self_attn', 'norm', 'ffn', 'norm']
    encoder_layer = BaseTransformerLayer(attn_cfgs=[dict(embed_dim=64, num_heads=4)],
                                         fnn_cfg=dict(embed_dim=64, feedforward_channels=1024, act_cfg='ReLU',
                                                      ffn_drop=0.),
                                         operation_order=('self_attn', 'norm', 'ffn', 'norm'))

    encoder_layer_output = encoder_layer(query=query, query_pos=query_pos, key_pos=key_pos)

    # decoder 通常是6个decoder_layer组成 每个decoder_layer['self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm']
    decoder_layer = BaseTransformerLayer(attn_cfgs=[dict(embed_dim=64, num_heads=4), dict(embed_dim=64, num_heads=4)],
                                         fnn_cfg=dict(embed_dim=64, feedforward_channels=1024, act_cfg='ReLU',
                                                      ffn_drop=0.),
                                         operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm'))

    decoder_layer_output = decoder_layer(query=query, key=key, value=value, query_pos=query_pos, key_pos=key_pos)

    pass

具体流程说明:

Encoder 通常是6个encoder_layer组成,每个encoder_layer[‘self_attn’, ‘norm’, ‘ffn’, ‘norm’]
Decoder 通常是6个decoder_layer组成,每个decoder_layer[‘self_attn’, ‘norm’, ‘cross_attn’, ‘norm’, ‘ffn’, ‘norm’]
按照以上方式搭建网络即可
其中norm为LayerNorm,在样本内部进行归一化。
如需获取全套代码请参考

### Transformer 架构中的编码器-解码器连接机制 在 Transformer 模型中,编码器解码器之间的交互是通过自注意机制以及前馈神经网络实现的。具体来说: #### 自注意机制 编码器处理输入序列并生成一系列键(Keys)、查询(Queries)值(Values)。这些向量用于计自注意权重矩阵,在此过程中每个位置可以关注到其他所有位置的信息[^1]。 对于解码器而言,则不仅依赖于自身的先前输出来进行预测,还会接收来自编码器层产生的最终表示作为附加输入。这意味着解码器能够访问整个输入序列的信息,从而更好地理解上下文环境[^2]。 #### 多头注意子层 为了增强模型捕捉不同类型的关联模式的能,引入了多头注意机制。它允许模型在同一层次上学习多个分布式的特征映射。当应用于跨模块通信时——即编解码间的互动——这使得解码过程可以在不同的抽象级别上利用源端口数据[^3]。 ```python import torch.nn as nn class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() assert d_model % num_heads == 0 self.d_k = d_model // num_heads self.num_heads = num_heads def forward(self, Q, K, V, mask=None): ... ``` 这种设计让每一层解码器都可以获取到来自对应层编码器输出的结果,并以此为基础构建更复杂的语义表达形式。同时,由于存在掩蔽操作(masking),所以在训练期间防止未见未来词项泄露给当前时间步长下的预测结果带来负面影响。 #### 前馈全连接网络 除了上述提到的关注部分外,每层还包含了一个简单的线性变换加上ReLU激活函数组成的两层感知机(Feed Forward Network)。该组件负责进一步加工由前面步骤得到的数据流,确保信息能够在各维度间充分混合传播。 综上所述,Transformer 中的编码器与解码器之间主要依靠精心设计好的注意建模方式完成高效而精准的消息传递任务;与此同时,借助残差链接(residual connections) 层规范化(layer normalization), 整体结构得以保持稳定收敛特性的同时具备强大的表征能
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知其所以然也

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值