牛客小白月赛14(部分题解)

本文精选了多个C++算法竞赛中的经典题目,包括快速幂、组合数计算、排序与查找等,通过实战案例深入解析算法原理及实现技巧,是算法学习者不可多得的参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

#include<cstdio>
#include<iostream>
using namespace std;
#define ll long long
const ll mod = 998244353;
ll n,k,p;
ll pow_m(ll a,ll k,ll p)
{
    ll ans=1;
    ll tmp=a%p;
    while(k)
    {
        if(k&1)ans=ans*tmp%p;
        tmp=tmp*tmp%p;
        k>>=1;
    }
    return ans;
}
ll C(ll n,ll m,ll p)
{
    if(m>n)return 0;
    ll a=1,b=1;
    for(int i=1;i<=m;i++)
    {
        a=a*(n+i-m)%p;
        b=b*i%p;
    }
    return a*pow_m(b,p-2,p)%p;
}
int main()
{
    scanf("%lld %lld %lld", &n, &k, &p);
    ll ans = 0;
    ll temp = C(n, k, mod);
    for(ll i = k ; i <= n ; ++ i){
        ans = (ans%mod + (temp*pow_m(p,i,mod)%mod)*pow_m(1-p,n-i,mod)%mod) % mod;
        temp = (((temp * (n-i))%mod)*pow_m(i+1, mod-2, mod))%mod;
    }
    cout << (ans + mod) % mod << endl;
    return 0;
}


在这里插入图片描述

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cstdlib>
#include<cmath>
#include<stack>
#include<map>
#include<vector>
#include<algorithm>
using namespace std;
#define ll long long
#define INF 0x3f3f3f3f
#define endl '\n'
const double pi = acos(-1);
const int maxn = 1e5 + 10;
const int maxm = 5e5 + 10;
const int mod = 104857601;
int n, k;
int a[maxn];
int main()
{
    scanf("%d", &n);
    if(n % 2==0) cout << "2";
    else cout <<"1";
    return 0;
}

在这里插入图片描述

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cstdlib>
#include<cmath>
#include<stack>
#include<map>
#include<vector>
#include<algorithm>
using namespace std;
#define ll long long
#define INF 0x3f3f3f3f
#define endl '\n'
const double pi = acos(-1);
const int maxn = 1e5 + 10;
const int maxm = 5e5 + 10;
const int mod = 104857601;
int n, k;
int a[maxn];
int main()
{
    scanf("%d %d", &n, &k);
    for(int i = 1 ; i <= n ; ++ i) scanf("%d", &a[i]);
    sort(a + 1, a + 1 + n);
    cout << a[k];
    return 0;
}

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
int n,s;double e=(1+sqrt(5))/2;
int main(){
    cin>>n;
    for(int q=1;q*q<=n;q++)
        for(int p=q;p<=q*e;p++)
            if(__gcd(p,q)==1) s+=n/p/p;
    cout<<s;
}

在这里插入图片描述

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cstdlib>
#include<cmath>
#include<stack>
#include<map>
#include<vector>
#include<algorithm>
using namespace std;
#define ll long long
#define INF 0x3f3f3f3f
#define endl '\n'
const double pi = acos(-1);
const int maxn = 2e7 + 10;
const int maxm = 5e5 + 10;
const int mod = 104857601;
int n, m;
int a[maxn], b[maxn];
int main()
{
    scanf("%d %d %d", &n, &a[1], &m);
    for(int i = 1 ; i <= n ; ++ i) b[i] += a[1];
    for(int i = 2 ; i <= n ; ++ i){
        a[i] = (a[i-1] + 7*i) % m;
        for(int j = i ; j <= n ; j += i){
            b[j] += a[i];
        }
    }
    ll ans = 0;
    for(int i = 1 ; i <= n ; ++ i) ans ^= b[i];
    cout << ans;
    return 0;
}

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 1e7 + 10;
const ll mod = 1e9 + 7;
int n, k, cnt;
bool prime[maxn];
ll Prime[maxn], p[maxn];
ll ksm(ll a, ll b){
    ll ans = 1, base = a % mod;
    while(b){
        if(b & 1) ans = (ans * base) % mod;
            base = (base * base) % mod;
        b >>= 1;
    }
    return ans % mod;
}
void make(){
    for(int i=0;i<maxn;i++)
        p[i]=ksm(i,k);
}
int main()
{

    scanf("%d %d", &n, &k);
    make();
    ll ans = 0;
    for(int i = 1 ; i <= n ; ++ i){
        ans = (ans + (n/i)*p[i]) % mod;
    }
    cout << (ans + mod) % mod;
    return 0;
}


### 关于牛客小白109的信息 目前并未找到关于牛客小白109的具体比信息或题解内容[^5]。然而,可以推测该事可能属于牛客网举办的系列算法竞之一,通常这类比会涉及数据结构、动态规划、图论等经典算法问。 如果要准备类似的事,可以通过分析其他场次的比目来提升自己的能力。例如,在牛客小白13中,有一道与二叉树相关的目,其核心在于处理树的操作以及统计最终的结果[^3]。通过研究此类问的解决方法,能够帮助理解如何高效地设计算法并优化时间复杂度。 以下是基于已有经验的一个通用解决方案框架用于应对类似场景下的批量更新操作: ```python class TreeNode: def __init__(self, id): self.id = id self.weight = 0 self.children = [] def build_tree(n): nodes = [TreeNode(i) for i in range(1, n + 1)] for node in nodes: if 2 * node.id <= n: node.children.append(nodes[2 * node.id - 1]) if 2 * node.id + 1 <= n: node.children.append(nodes[2 * node.id]) return nodes[0] def apply_operations(root, operations, m): from collections import defaultdict counts = defaultdict(int) def update_subtree(node, delta): stack = [node] while stack: current = stack.pop() current.weight += delta counts[current.weight] += 1 for child in current.children: stack.append(child) def exclude_subtree(node, total_nodes, delta): nonlocal root stack = [(root, False)] # (current_node, visited) subtree_size = set() while stack: current, visited = stack.pop() if not visited and current != node: stack.append((current, True)) for child in current.children: stack.append((child, False)) elif visited or current == node: if current != node: subtree_size.add(current.id) all_ids = {i for i in range(1, total_nodes + 1)} outside_ids = all_ids.difference(subtree_size.union({node.id})) for idx in outside_ids: nodes[idx].weight += delta counts[nodes[idx].weight] += 1 global nodes nodes = {} queue = [root] while queue: curr = queue.pop(0) nodes[curr.id] = curr for c in curr.children: queue.append(c) for operation in operations: op_type, x = operation.split(' ') x = int(x) target_node = nodes.get(x, None) if not target_node: continue if op_type == '1': update_subtree(target_node, 1) elif op_type == '2' and target_node is not None: exclude_subtree(target_node, n, 1) elif op_type == '3': path_to_root = [] temp = target_node while temp: path_to_root.append(temp) if temp.id % 2 == 0: parent_id = temp.id // 2 else: parent_id = (temp.id - 1) // 2 if parent_id >= 1: temp = nodes[parent_id] else: break for p in path_to_root: p.weight += 1 counts[p.weight] += 1 elif op_type == '4': pass # Implement similarly to other cases. result = [counts[i] for i in range(m + 1)] return result ``` 上述代码片段展示了针对特定类型的树形结构及其操作的一种实现方式。尽管它并非直接对应小白109中的具体目,但它提供了一个可借鉴的设计思路。 ####
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值