Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
这道题应该注意只要是在一条直线上就算。第一反应是用HashMap<Double, Integer>来存斜率,但是如果double精确到小数点后好多位之后就趋于相等,key值就相等了,所以一般不要用double作key。这里可以用最大公约数gcd来吧斜率的分子分母化简作string的key。如果j想初始化为i+1,就在外循环再遍历一波map找最大。代码如下:
/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
* }
*/
public class Solution {
public int maxPoints(Point[] points) {
if (points == null) {
return 0;
}
if (points.length <= 2) {
return points.length;
}
int res = 0;
for (int i = 0; i < points.length; i ++) {
int same = 0;
int sameX = 1;
HashMap<String, Integer> map = new HashMap<String, Integer>();
for (int j = 0; j < points.length; j ++) {
if (i != j) {
if ((points[i].x == points[j].x) && (points[i].y == points[j].y)) {
same ++;
}
if (points[i].x == points[j].x) {
sameX ++;
continue;
}
int a = points[i].y - points[j].y;
int b = points[i].x - points[j].x;
int gcd = findGCD(a, b);
String k = (a / gcd) + "" + (b / gcd);
if (map.containsKey(k)) {
map.put(k, map.get(k) + 1);
} else {
map.put(k, 2);
}
res = Math.max(res, map.get(k) + same);
}
}
res = Math.max(res, sameX);
}
return res;
}
private int findGCD(int a, int b) {
if (a == 0) {
return b;
}
return findGCD(b % a, a);
}
}