Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Examples:
[2,3,4]
, the median is 3
[2,3]
, the median is (2
+ 3) / 2 = 2.5
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k =
3.
Window position Median --------------- ----- [1 3 -1] -3 5 3 6 7 1 1 [3 -1 -3] 5 3 6 7 -1 1 3 [-1 -3 5] 3 6 7 -1 1 3 -1 [-3 5 3] 6 7 3 1 3 -1 -3 [5 3 6] 7 5 1 3 -1 -3 5 [3 6 7] 6
Therefore, return the median sliding window as [1,-1,-1,3,5,6]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
public class Solution {
class Node implements Comparable<Node>{
int val, id;
public Node(int _val, int _id) {
this.val = _val;
this.id = _id;
}
public int compareTo(Node other) {
Node a = (Node) other;
if (this.val == a.val) {
return this.id - a.id;
} else if (this.val > a.val) {
return 1;
} else {
return -1;
}
}
}
public void add(TreeSet<Node> minHeap, TreeSet<Node> maxHeap, Node node) {
maxHeap.add(node);
Node min = maxHeap.first();
minHeap.add(min);
maxHeap.remove(min);
while (minHeap.size() > maxHeap.size() + 1) {
Node max = minHeap.last();
maxHeap.add(max);
minHeap.remove(max);
}
}
public void remove(TreeSet<Node> minHeap, TreeSet<Node> maxHeap, Node node) {
if (minHeap.contains(node)) {
minHeap.remove(node);
} else {
maxHeap.remove(node);
}
}
public double[] medianSlidingWindow(int[] nums, int k) {
TreeSet<Node> minHeap = new TreeSet<Node>();
TreeSet<Node> maxHeap = new TreeSet<Node>();
double[] res = new double[nums.length - k + 1];
int index = 0;
for (int i = 0; i < k - 1; i ++) {
add(minHeap, maxHeap, new Node(nums[i], i));
//System.out.print(minHeap.size() + " ");
//System.out.println(maxHeap.size());
}
for (int i = k - 1; i < nums.length; i ++) {
add(minHeap, maxHeap, new Node(nums[i], i));
res[index ++] = minHeap.size() == maxHeap.size()? ((long)maxHeap.first().val + (long)minHeap.last().val) / 2.0: minHeap.last().val;
remove(minHeap, maxHeap, new Node(nums[i - k + 1], i - k + 1));
//System.out.print(minHeap.size() + " ");
//System.out.println(maxHeap.size());
}
return res;
}
}