Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
nums: [1,2,3] Result: [1,2] (of course, [1,3] will also be ok)
Example 2:
nums: [1,2,4,8] Result: [1,2,4,8]
Credits:
Special thanks to @Stomach_ache for adding this problem and creating all test cases.
public class Solution {
public List<Integer> largestDivisibleSubset(int[] nums) {
int len = nums.length;
int[] count = new int[len];
int[] pre = new int[len];
int max = 0;
int index = -1;
Arrays.sort(nums);
for (int i = 0; i < len; i ++) {
count[i] = 1;
pre[i] = -1;
for (int j = i - 1; j >= 0; j --) {
if (nums[i] % nums[j] == 0) {
if (count[j] + 1 > count[i]) {
count[i] = count[j] + 1;
pre[i] = j;
}
}
}
if (max < count[i]) {
max = count[i];
index = i;
}
}
List<Integer> res = new ArrayList<Integer>();
while (index != -1) {
res.add(nums[index]);
index = pre[index];
}
return res;
}
}