Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a "rotation function" F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.这道题你可以按他的等式来计算每一个Fn,时间复杂度是 O(n2)。代码如下:
public class Solution {
public int maxRotateFunction(int[] A) {
if (A.length == 0) {
return 0;
}
int max = Integer.MIN_VALUE;
int Fn = 0;
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < A.length; j++) {
if (i + j < A.length)
Fn += A[i + j] * j;
else
Fn += A[i + j - A.length] * j;
}
max = Math.max(max, Fn);
Fn = 0;
}
return max;
}
}
也可以推出来 Fn 的递推关系,推到过程如下:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
F(k+1) = 0 * Bk[n-1] + 1 * Bk[0] + ... + (n-2) * Bk[n-3] + (n-1) * Bk[n-2]
Then,
F(k+1) - F(k) = Bk[0] + Bk[1] + Bk[2] + ... + Bk[n-1] - (n)Bk[n-1]
= (Bk[0] + ... + Bk[n-1]) - (n)Bk[n-1]
= sum - (n)Bk[n-1]
Thus,
F(k+1) = F(k) + sum - (n)Bk[n-1]
代码如下:
public class Solution {
public int maxRotateFunction(int[] A) {
if (A.length == 0) {
return 0;
}
int Fn = 0;
int sum = 0;
for (int i = 0; i < A.length; i++) {
Fn += i * A[i];
sum += A[i];
}
int max = Fn;
for (int i = A.length - 1; i >= 0; i--) {
Fn = Fn + sum - A.length * A[i];
max = Math.max(max, Fn);
}
return max;
}
}