In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.
For now, suppose you are a dominator of m 0s
and n 1s
respectively.
On the other hand, there is an array with strings consisting of only 0s
and 1s
.
Now your task is to find the maximum number of strings that you can form with given m 0s
and n 1s
.
Each 0
and 1
can
be used at most once.
动态规划总是最恶心的,本题将中间信息存储在一个二维数组中,每拿到一个字符串,动态更新dp[][] 。
public class Solution {
//首先 题目可有剩余 不然需要if((j==num0&&k==num1)||dp[j-num0][k-num1]!=0)
//不断动态更新dp[][] 要从后向前更新 因为每个字符串只能用一次 如果从前往后更新 前面额更新结果会对后面造成干扰
//这个道理和01背包以及完全背包的区别是一样的 如果从前往后更新本题的题意将变为每个字符串可以用无数次
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp=new int[m+1][n+1];
for(int i=0;i<strs.length;i++){
int num0=0,num1=0;
for(int k=0;k<strs[i].length();k++){
if(strs[i].charAt(k)=='0') num0++;
else if(strs[i].charAt(k)=='1') num1++;
}
for(int j=m;j>=num0;j--){
for(int k=n;k>=num1;k--){
// if((j==num0&&k==num1)||dp[j-num0][k-num1]!=0)
dp[j][k]=Math.max(dp[j][k],dp[j-num0][k-num1]+1);
}
}
}
return dp[dp.length-1][dp[0].length-1];
}
}
注意: 要从后向前更新 因为每个字符串只能用一次,如果从前往后更新 前面额更新结果会对后面造成干扰,这个道理和01背包以 及完全背包的区别是一样的,如果从前往后更新本题的题意将变为每个字符串可以用无数次