leetcode 474. Ones and Zeroes(背包问题)

In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.

Note:

  1. The given numbers of 0s and 1s will both not exceed 100
  2. The size of given string array won't exceed 600.

 

Example 1:

Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4

Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”

 

Example 2:

Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2

Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".

 


 

 

背包问题,容量[m,n],价值为选择的字符串个数。

三维dp空间复杂度可以缩减到2维。有两种方式的dp,第二种dp能存下更多的信息

1.dp[j][k]代表总共可用[j,k]容量时的最大价值,第一种为dp[j][k]=max(dp[j][k],dp[j-c1][k-c2]+1);

2.dp[j][k]代表能刚好得到[j,k]容量时的最大价值(dp[m][n]可能为0);第二种为dp[i+c1][j+c2]=max(dp[i+c1][j+c2],dp[i][j]+1);

   (第二种dp[j][k]=max(dp[j][k],dp[j-c1][k-c2]+1)或者这样构造也行)

c1,c2为一个字符串0,1的个数。注意边界情况。

第一种dp。

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int len=strs.length;
        int[][] dp=new int[m+1][n+1];
        for(int i=0;i<len;i++){
            int c1=0,c2=0;
            for(int j=0;j<strs[i].length();j++){
                if(strs[i].charAt(j)=='0') c1++;
                else c2++;
            }
            for(int j=m;j>=0;j--){
                for(int k=n;k>=0;k--){
                    if(i==0){
                        if(j>=c1&&k>=c2){
                            dp[j][k]=1;
                        }    
                    }else{
                        dp[j][k]=dp[j][k];
                        if(j>=c1&&k>=c2){
                            dp[j][k]=Math.max(dp[j-c1][k-c2]+1,dp[j][k]);
                        }
                    }
                }
            }
        }
        return dp[m][n];
    }
}

 

第二种dp.

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        // dp[j+c1][k+c2]=dp[j][k]+1
        int len=strs.length;
        int[][] dp=new int[m+1][n+1];
        for(int i=0;i<len;i++){
            int c1=0,c2=0;
            for(int j=0;j<strs[i].length();j++){
                if(strs[i].charAt(j)=='0') c1++;
                else c2++;
            }
            for(int j=m;j>=0;j--){
                for(int k=n;k>=0;k--){
                    if(dp[j][k]==0&&!(j==0&&k==0)) continue;
                    if(j+c1<=m&&k+c2<=n){
                        dp[j+c1][k+c2]=Math.max(dp[j][k]+1,dp[j+c1][k+c2]);    
                    }
                }
            }
        }
        int max=0;
        for(int j=m;j>=0;j--){
            for(int k=n;k>=0;k--){
                max=Math.max(max,dp[j][k]);
            }
        }
        return max;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值