LeetCode: Ones and Zeroes

本文探讨了如何利用动态规划解决特定条件下字符串的最大组合数量问题。通过定义状态转移方程,给出了具体的实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.

Note:
The given numbers of 0s and 1s will both not exceed 100
The size of given string array won’t exceed 600.

Example 1:
Input: Array = {“10”, “0001”, “111001”, “1”, “0”}, m = 5, n = 3
Output: 4
Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”

Example 2:
Input: Array = {“10”, “0”, “1”}, m = 1, n = 1
Output: 2
Explanation: You could form “10”, but then you’d have nothing left. Better form “0” and “1”.

题目给出m个0,n个1,问最多能组成多少个字符串。其中,组成的字符串应属于给出的字符串集合中的一个。
用动态规划来解。定义dp[i][j]为给出i个0,j个1时能组成的最大字符串数目,则动态转移函数为:
dp[i][j]=max{dp[i][j],dp[i-zeros][j-ones]+1}
其中zeros为字符串集合中某个字符串0的个数,相应地,ones为该字符串中1的个数。Accepted的代码:

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        //dp[i][j]表示i个0,j个1时能得到的最大字符串数
        vector<vector<int> > dp(m+1,vector<int>(n+1,0));
        for(int i=0;i<strs.size();i++)
        {
            int zeros=0,ones=0;
            for(int j=0;j<strs[i].length();j++)
            {
                if(strs[i][j]=='0') zeros++;
                else if(strs[i][j]=='1') ones++;
            }
            for(int a=m;a>=zeros;a--)
            {
                for(int b=n;b>=ones;b--)
                {
                    if(dp[a][b]<dp[a-zeros][b-ones]+1)
                        dp[a][b]=dp[a-zeros][b-ones]+1;
                }
            }
        }
        return dp[m][n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值