lightoj 1369 - Answering Queries (数学、规律、水)

本文介绍了一种数组操作的方法,包括数组元素的更新与特定函数的查询。通过观察和总结,得出了一种高效的求和规律,并实现了代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Time Limit:3000MS    Memory Limit:32768KB    64bit IO Format:%lld & %llu(明确指出64位格式为lld,用I64d会wa!!!)

Description

The problem you need to solve here is pretty simple. You are give a function f(A, n), where A is an array of integers and n is the number of elements in the array. f(A, n) is defined as follows:

long long f( int A[]int n ) { // n = size of A

    long long sum = 0;

    for( int= 0; i < n; i++ )

        for( int= i + 1; j < n; j++ )

            sum += A[i] - A[j];

    return sum;

}

Given the array A and an integer n, and some queries of the form:

1)      0 x v (0 ≤ x < n, 0 ≤ v ≤ 106), meaning that you have to change the value of A[x] to v.

2)      1, meaning that you have to find f as described above.

Input

Input starts with an integer T (≤ 5), denoting the number of test cases.

Each case starts with a line containing two integers: n and q (1 ≤ n, q ≤ 105). The next line contains n space separated integers between 0 and 106 denoting the array A as described above.

Each of the next q lines contains one query as described above.

Output

For each case, print the case number in a single line first. Then for each query-type "1" print one single line containing the value of f(A, n).

Sample Input

1

3 5

1 2 3

1

0 0 3

1

0 2 1

1

Sample Output

Case 1:

-4

0

4

这道题吧,其实水水就过去了,刚开始以为要用线段树来做,后来发现了个求和规律= =,也就是,假设有n个数,那么根据上面的代码求出的sum方法,可推出一个求和规律,由于下标是从0开始,所以先将n减一,然后可得求和规律即sum=(n)*a[0]+(n-2)*a[1]+(n-4)*a[2]+(n-6)*a[3]+(n-8)*a[4]+……(n-2*n)*a[n-1];也就是说,他的和等于系数从n-1开始每次减2,乘上a[i];(不理解的可以验证几组数据很容易就发现了),求和公式得出来了,那么如果进行更新时候,只需要将要更新的一项去掉,然后加上该项更新后的值就行了,如果进行询问,直接输出sum;


#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define N 50010
#define INF 999999999
using namespace std;
int a[100010],b[100010];
int main()
{
    int n,p,q,i,x,v,h;
    long long sum;//注意用long long不然会溢出;

    int t;
    int k=0;
    scanf("%d",&t);
    while(t--)
    {
        sum=0;
        scanf("%d%d",&n,&q);
        for(i=0;i<n;i++)
            scanf("%d",&a[i]);
        h=n;
        n--;
        for(i=0; i<h; i++)
        {
            sum+=((long long)n)*a[i];//进行求和运算;
            b[i]=n;把每一项对应的系数存起来,方便后面的更新;
            n=n-2;
        }
        printf("Case %d:\n",++k);
        while(q--)
        {
            scanf("%d",&p);
            if(p==0)
            {
                scanf("%d%d",&x,&v);
                sum-=((long long)b[x])*a[x];//如果要把a[x]的值更新为v,那么先将这一项与对应系数的乘积减去;
                sum+=((long long)b[x])*v;//然后再加上更新后的值与对应系数的乘积;
                a[x]=v;//这里很重要,注意把a[x]更新为v
            }
            if(p==1)
                printf("%lld\n",sum);//输出用lld,lld,不能用I64d,因为题目上明确说了64位输出格式为lld,我只想说没看见题目前面的要求,用I64wa了N次= =
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值