sdut 2884 Painting Cottages 计算几何

本文探讨了一种新颖的算法挑战,即如何确定不同颜色的小屋布局方案数量,这些方案可以通过一条直线将两种颜色的小屋完全分开。文章详细介绍了输入输出格式、示例,并给出了一段实现这一目标的C++代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Painting Cottages

Time Limit: 2000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描述

The new cottage settlement is organized near the capital of Flatland. The construction company that is building the settlement has decided to paint some cottages pink and others — light blue. However, they cannot decide which cottages must be painted which color. The director of the company claims that the painting is nice if there is at least one pink cottage, at least one light blue cottage, and it is possible to draw a straight line in such a way that pink cottages are at one side of the line, and light blue cottages are at the other side of the line (and no cottage is on the line itself). The main architect objects that there are several possible nice paintings. Help them to find out how many different nice paintings are there.
 

输入

The first line of the input file contains n — the number of the cottages (1 ≤ n ≤ 300). The following n lines contain the coordinates of the cottages — each line contains two integer numbers xi and yi (−10^4 ≤ xi, yi ≤ 10^4).
 

输出

Output one integer number — the number of different nice paintings of the cottages.
 

示例输入

4
0 0
1 0
1 1
0 1

示例输出

12

提示

Sample.

来源

2014年山东省第五届ACM大学生程序设计竞赛

示例程序

 

  • 提交 
  • 状态 
  • 讨论
    • 给你一个点集求能分割成几种不同的2个空间
    • 可以转化为求点集能有几条直线
    • 利用3点共线的思想 通过gcd来确定 一条直线最小两个点
    • ACcode:
    • #include <cstdio>
      #include <map>
      #define maxn 1005
      using namespace std;
      inline int gcd(int a,int b){return b==0?a:gcd(b,a%b);}
      struct Point{
          int x,y;
          Point(){}
          inline Point(int _x,int _y){
              x=_x;
              y=_y;
          }
          inline double lenx(const Point &b)const{
              return x-b.x;
          }
          inline double leny(const Point &b)const{
              return y-b.y;
          }
      }P[maxn];
      int main(){
          int n;
          while(~scanf("%d",&n)){
              for(int i=1;i<=n;++i){
                  int x,y;
                  scanf("%d%d",&x,&y);
                  P[i]=Point(x,y);
              }
              int ans=0;
              for(int i=1;i<=n;++i){
                  map<pair<int ,int>,int> dp;
                  for(int j=i+1;j<=n;++j){
                          int x=P[i].lenx(P[j]);
                          int y=P[i].leny(P[j]);
                          int z=gcd(x,y);
                      if(!dp[make_pair(x/z,y/z)])dp[make_pair(x/z,y/z)]=++ans;
                  }
              }
              printf("%d\n",ans<<1);
          }
          return 0;
      }
      


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值