Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2 1000 53 87 123456789
Sample Output
7922 6060
扩展欧几里得:
已知:设:K = (A/B)%9973 , 则A/B = k + 9973x (x未知), 因此A == kB + 9973xB
A%9973==n,所以 KB%9973==n;
故(K/n)B +(-y/n)*9973 = gcd(B,9973) ;
转化为 ax+by=gcd(a,b);
所以直接用扩展欧几里得求出x==K/n;
再让x*n即为所求;
#include<stdio.h> #include<iostream> #include<algorithm> #include<math.h> #include<string.h> using namespace std; int exgcd(int a,int b,int &x,int &y) { if(b==0) { x=1; y=0; return a; } int r=exgcd(b,a%b,x,y); int t=x; x=y; y=t-a/b*y; return r; } int main() { int n,b,ans,x,y; int T; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&b); exgcd(b,9973,x,y); x=(x+9973)%9973; printf("%d\n",(x*n)%9973); } }