PKU3051 Satellite Photographs 简单DFS

/*Satellite Photographs
Time Limit: 1000MS        Memory Limit: 65536K
Total Submissions: 1255        Accepted: 595

Description
Farmer John purchased satellite photos of W x H pixels of his farm (1 <= W <= 80, 1 <= H <= 1000) and wishes to determine the largest 'contiguous' (connected) pasture. Pastures are contiguous when any pair of pixels in a pasture can be connected by traversing adjacent vertical or horizontal pixels that are part of the pasture. (It is easy to create pastures with very strange shapes, even circles that surround other circles.)

Each photo has been digitally enhanced to show pasture area as an asterisk ('*') and non-pasture area as a period ('.'). Here is a 10 x 5 sample satellite photo:

..*.....**
.**..*****
.*...*....
..****.***
..****.***

This photo shows three contiguous pastures of 4, 16, and 6 pixels. Help FJ find the largest contiguous pasture in each of his satellite photos.

Input
* Line 1: Two space-separated integers: W and H

* Lines 2..H+1: Each line contains W "*" or "." characters representing one raster line of a satellite photograph.

Output
* Line 1: The size of the largest contiguous field in the satellite photo.

Sample Input

10 5
..*.....**
.**..*****
.*...*....
..****.***
..****.***

Sample Output

16

Source
USACO 2005 November Bronze

*/











#include <iostream>
#include <vector>
using namespace std;

class pas
{
public:
    int sign;
    char value;
};

int count;
void solution(vector<vector<pas> > &pasture,int w,int h,int ii,int jj)
{
    extern int count;
    count++;
    pasture[ii][jj].sign = 1;
    if(jj - 1 >= 0 && pasture[ii][jj - 1].sign == 0 && pasture[ii][jj - 1].value == '*' )
    {
        solution(pasture,w,h,ii,jj - 1);
       
       
    }
    if(jj + 1 < w && pasture[ii][jj + 1].sign == 0 && pasture[ii][jj + 1].value == '*')
    {
        solution(pasture,w,h,ii,jj + 1);
       
       
    }
    if(ii - 1 >= 0 && pasture[ii - 1][jj].sign == 0 && pasture[ii - 1][jj].value == '*')
    {
        solution(pasture,w,h,ii - 1,jj);
       
       
    }
    if(ii + 1 < h && pasture[ii + 1][jj].sign == 0 && pasture[ii + 1][jj].value == '*')
    {
        solution(pasture,w,h,ii + 1,jj);
       
       
    }
    return;
}









int main(void)
{
    int w,h;
    cin>>w>>h;
    int largest = 0;
    extern int count;
    count = 0;
    vector<vector<pas> > pasture(h,vector<pas>(w));
    for(int i = 0;i < h;i++)
    {
        for(int j = 0;j < w;j++)
        {
            cin>>pasture[i][j].value;
            pasture[i][j].sign = 0;
        }
    }
    for(int ii = 0;ii < h;ii++)
    {
        for(int jj = 0;jj < w;jj++)
        {
            if(pasture[ii][jj].sign == 0 && pasture[ii][jj].value == '*')
            {
                solution(pasture,w,h,ii,jj);
            }
            if(largest < count)
            {
                largest = count;
            }
            count = 0;
        }
    }
   
    cout<<largest<<endl;
   
    return 0;
}

 

依旧是简单的DFS。。。不过做这题遇到2个问题。。。一个是函数引用的问题。。一定要记住要使子函数中的操作改变某个变量或数组必须用&符号阿。。。。

另一个是提交的时候全局变量count提示没有在2个函数中申明。。。所以加了extern

内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值