接《分类器组合方法Bootstrap, Boosting, Bagging, 随机森林(一) 》
Adaboost
Adaboost给每个基分类器设置了一个重要性参数α,基分类器的重要性参数α是训练误差的的函数,错误率越接近于1,则α有一个很大的负值,如果错误率接近于0,则有一个很大的正值。接下来,用α更新训练样本的权值。
接《分类器组合方法Bootstrap, Boosting, Bagging, 随机森林(一) 》
Adaboost
Adaboost给每个基分类器设置了一个重要性参数α,基分类器的重要性参数α是训练误差的的函数,错误率越接近于1,则α有一个很大的负值,如果错误率接近于0,则有一个很大的正值。接下来,用α更新训练样本的权值。