Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路: 自底向上,从最后第二行开始,选择离底最近的线路,替换现有值。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
for (int i = triangle.size() - 2; i >= 0; i--)
for (int j = 0; j < triangle[i].size(); j++)
triangle[i][j] += min(triangle[i + 1][j], triangle[i + 1][j + 1]);
return triangle[0][0];
}
};