【那些年我们一起看过的论文】之《SLAM for Dummies》

本文介绍了SLAM(即时定位与地图构建)的基本概念和技术框架。详细讲述了SLAM的主要组成部分:地标提取、数据关联、状态估计、状态更新及地标更新。同时,文章强调了实施SLAM所需的硬件设备,并列举了实施步骤。
部署运行你感兴趣的模型镜像

/*
这是一篇SLAM的“hello world”说明书,结构框架介绍得很全面,可以建立初步的认识。关于SLAM,还有后续,更具体更常见的例子,慢慢看,慢慢学。
*/
SLAM是Simultaneous Localization and Mapping的缩写,即”即时定位与地图构建 “。
It helps robots construct their surrounding map and guide themselves.
SLAM needs a huge amount of hardware, and it’s more like a concept than an algorithm. EKF is a complete solution for SLAM( Extended Kalman Filter).
SLAM consists of multiple parts: Landmark extraction, data association, state
estimation, state update and landmark update.( 地标提取,数据关联,状态估计,状态更新和地标更新)
To do SLAM there is the need for hardware like
1.a mobile robot (with wheels and odometry performance)
2. a range measurement device.( laser scanner + sonar + vision)
Steps:

A slam process
a) Landmarks should be easily re-observable.
b) Individual landmarks should be distinguishable from each other.
c) Landmarks should be plentiful in the environment.
d) Landmarks should be stationary.

The implementation of the EKF and other codes.

只言片语 随手摘录
以上。

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

SLAM新手入门史上最详细介绍。 SLAM for Dummies- A Tutorial Approach to Simultaneous Localization and Mapping By the ‘dummies’ Søren Riisgaard of contents 1. TABLE OF CONTENTS.........................................................................................................2 2. INTRODUCTION ...................................................................................................................4 3. ABOUT SLAM........................................................................................................................6 4. THE HARDWARE..................................................................................................................7 THE ROBOT....................................................................................................................................7 THE RANGE MEASUREMENT DEVICE.................................................................................................8 5. THE SLAM PROCESS .........................................................................................................10 6. LASER DATA.......................................................................................................................14 7. ODOMETRY DATA.............................................................................................................15 8. LANDMARKS......................................................................................................................16 9. LANDMARK EXTRACTION..............................................................................................19 SPIKE LANDMARKS .......................................................................................................................19 RANSAC....................................................................................................................................20 MULTIPLE STRATEGIES..................................................................................................................24 10. DATA ASSOCIATION.....................................................................................................25 11. THE EKF ..........................................................................................................................28 OVERVIEW OF THE PROCESS ..........................................................................................................28 THE MATRICES.............................................................................................................................29 The system state: X..................................................................................................................29 The covariance matrix: P.........................................................................................................30 The Kalman gain: K.................................................................................................................31 The Jacobian of the measurement model: H.............................................................................31 The Jacobian of the prediction model: A ..................................................................................33 The SLAM specific Jacobians: Jxr and Jz ..................................................................................34 The process noise: Q and W.....................................................................................................35 The measurement noise: R and V .............................................................................................35 STEP 1:UPDATE CURRENT STATE USING THE ODOMETRY DATA.......................................................36 STEP 2:UPDATE STATE FROM RE-OBSERVED LANDMARKS ..............................................................37 STEP 3:ADD NEW LANDMARKS TO THE CURRENT STATE.................................................................39 12. FINAL REMARKS...........................................................................................................41 3 13. REFERENCES: ................................................................................................................42 14. APPENDIX A: COORDINATE CONVERSION.............................................................43 15. APPENDIX B: SICK LMS 200 INTERFACE CODE......................................................44 16. APPENDIX C: ER1 INTERFACE CODE .......................................................................52 17. APPENDIX D: LANDMARK EXTRACTION CODE ....................................................82
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值