文章目录
前言
按照coco数据集制作自己公司的大型目标检测数据集,Airport Objects in Context(AOCO)
一、公开数据集
1.1 COCO数据集
COCO数据集全称为Microsoft Common Objects in Context(MS COCO),它是一个大规模(large-scale)的对象检测(object detection)、分割(segmentation)、关键点检测(key-point detection)和字幕(captioning)数据集。此数据集由32.8万张图像组成,官网为:https://cocodataset.org/#home ,论文《Microsoft COCO: Common Objects in Context》:https://arxiv.org/pdf/1405.0312.pdf
COCO数据集的第一个版本于2014年发布,它包含16.4万张图像,分为训练集(8.3万张)、验证集(4.1万张)和测试集(4.1万张)。2015年发布了额外的8.1万张图像测试集,包括所有以前的测试图像和4万张新图像。2017年将训练集/验证集分配从8.3万/4.1万更改为11.8万/0.5万张,新的拆分使用相同的图像和标注(annotation)。2017年测试集是2015年测试集的子集包含4.1万张。此外,2017版本包含一个新的未标注的12.3万张数据集。近几年的Tasks使用的都是2017年的数据集。可以从https://cocodataset.org/#download 直接下载需要的COCO数据集。
COCO API可以帮助加载、解析和可视化COCO中的标注。API支持多种标注格式(annotation formats)。
COCO数据集features:
(1).对象检测:具有80个对象类别(object categories)的边界框(bounding boxes)和每个实例的分割掩码。80个类别包括:person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports_ball, kite, baseball bat, baseball glove, s