python蒙特卡洛方法求圆周率

使用Python的蒙特卡洛方法,通过在单位正方形内随机生成点并计算落入1/4圆内的点的比例,进而求得圆周率π的近似值。通过对不同投点数量的实验,计算均值和方差,并展示结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

蒙特卡洛方法求解圆周率pi

工具

python3.7 + pycharm


求解思路

首先使用random函数随机生成单位正方形之间的点,记录其分布情况,再求出1/4圆内的点与单位正方形内点的比值,将该值乘以4即为pi值,重复上述过程20次,利用numpy.mean函数和numpy.var函数求出均值mean和方差variance。改变投点个数,记录对应的mean和variance,用PrettyTable绘制结果表格。


python源代码

1.	import random  
2.	import numpy as np  
3.	from prettytable import PrettyTable  
4.	  
5.	  
6.	def getPi():  
7.	    arr = []  
8.	    table = PrettyTable(["point num", "mean", "variance"])  
9.	    time = [20, 50, 100, 200, 300, 500, 1000, 5000]  
10.	    for t in time:  
11.	        # print(t)  
12.	        for j in range(20):  
13.	            cnt = 0  
14.	            for i in range(t):  
15.	                x = random.uniform(0, 1)  # 从一个均匀分布中随机采样,区间为左闭右开  
16.	                y = random.uniform(0, 1)  
17.	  
18.	                if
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值