dl框架支持的算子(欢迎补充更正)

本文详细对比了Caffe、mxnet、onnx、Tensorflow及tf_lite等深度学习框架所支持的算子集,涵盖了从基本数学运算到复杂神经网络层的各种算子,为开发者选择合适的框架提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

支持的算子
● Caffe
Accuracy, BatchNorm, Clip, Concat, Convolution, Data, Deconvolution, DepthwiseConvolution, DetectionOutput, Dropout, Eltwise, Flatten, InnerProduct, Input, LRN, Normalize, PReLU, Permute, Pooling, Power, PriorBox, ROIPooling, RPN, ReLU, ReLU6, Region, Reorg, Reshape, Resize, Scale, Sigmoid, Slice, Softmax, SoftmaxWithLoss, Split, TanH, Tile, Upsample

● mxnet
Activation, BatchNorm, Concat, Convolution, Copy, Crop, Deconvolution, Dropout, FullyConnected, LeakyReLU, Pooling, RNN, Reshape, SoftmaxActivation, SoftmaxOutput, SwapAxis, UpSampling, _minus_scalar, _mul_scalar, add_n, clip, elemwise_add, transpose

● onnx
Add, AveragePool, BatchNormalization, Concat, Conv, Dropout, Flatten, Gemm, GlobalAveragePool, MaxPool, Relu, Softmax

● Tensorflow
Add, AddN, ArgMax, ArgMin, AudioSpectrogram, AvgPool, ComposedBN, ConcatV2, Conv2D, Conv2DBackpropInput, DecodeWav, DepthwiseConv2dNative, Dropout, Exp, FIFOQueueV2, Flatten, Floor, FusedBatchNorm, GRU, LRN, LSTM, Log, MatMul, MaxPool, Maximum, Mean, Mfcc, Minimum, MirrorPad, Mul, Pad, Pow, RNN, RealDiv, Relu, Relu6, Reshape, ResizeNearestNeighbor, ReverseV2, Rsqrt, Sigmoid, Softmax, Split, Sqrt, StridedSlice, Sub, Sum, Tanh, TopKV2

● tf_lite
ADD, AVERAGE_POOL_2D, CONCATENATION, CONV_2D, DEPTHWISE_CONV_2D, LOGISTIC, MAX_POOL_2D, RESHAPE, SOFTMAX, SQUEEZE, TFLite_Detection_PostProcess

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值