pytorch的Tensor变量之间的转换

系统默认是torch.FloatTensor类型
data = torch.Tensor(2,3)是一个2*3的张量,类型为FloatTensor
data.cuda()就转换为GPU的张量类型,torch.cuda.FloatTensor类型

(1)CPU或GPU之间的张量转换
在Tensor后加long(), int(), double(),float(),byte()等函数就能将Tensor进行类型转换type()函数,
data为Tensor数据类型,data.type()为给出data的类型,
如果使用data.type(torch.FloatTensor)则强制转换为torch.FloatTensor类型张量

(2)CPU张量转化成GPU张量
data.cuda()

(3)GPU张量转化成CPU张量
data.cpu()

(4)Variable变量转换成普通的Tensor
Variable是一个Wrapper,装在里面的data是tensor,如果Var是Variable变量,使用Var.data获得Tensor变量

(5) Tensor与numpy array之间的转换
Tensor->numpy 使用data.numpy(),data为Tensor变量
Numpy->Tensor 使用torch.from_numpy(data),data为numpy变量

(6) 分别获取张量和数组的尺寸,注意size的使用
torch 张量
获取张量的尺寸 a.size()
numpy 数组
获取数组的尺寸 b.shape
获取数组中元素的个数: b.size (这里和张量中的属性的size的含义不同)

(7)升维和降维的问题
unsqueeze(N)升维到第N维
squeeze(N)降维第N维
需要做如下操作:
x = x.unsqueeze(0) 假如x=(3,1080,1920) 操作后 x = (1,3,1080,1920)
降维也是做同样的操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值