Gallery Set与Probe set理解(开始做识别领域了,开心)

本文详细解析了如何在优快云上发布一篇高质量的技术博客,包括标题、标签和内容的优化策略,旨在帮助作者提高博客的可见性和吸引力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://blog.youkuaiyun.com/u011557212/article/details/60963237

Surveillance Face Recognition Challenge # ======================== Dataset Structure ========================== # "Training_Set": Ordered by face identities, i.e. each directory contains face images from a specific training identity. There are a total of 5,319 directories each is named by the corresponding identity. The image file name is in format of [PersonID]_[CameraID]_[ImageName].jpg. "Face_Identification_Test_Set" -"gallery": containing 60,294 gallery images from 5,319 test identities (IDs). -"mated_probe": containing 60,423 probe images from 5,319 test IDs, with mated gallery true match images in the "gallery" folder. -"unmated_probe": containing 12,1736 distractor probe face images without mated gallery true match images in the "gallery" folder, i.e. the open-set face identification scenario. -"gallery_img_ID_pairs.mat": the gallery image names and the corresponding face IDs -"mated_probe_img_ID_pairs.mat": the mated probe image names and the corresponding face IDs "Face_Verification_Test_Set": -"verification_images": containing 10,051 images, a subset of the whole test set, randomly sampled to build 5,320 positive and 5,320 negative pairs -"positive_pairs_names.mat": 5320_by_2 cell specifying the image pairs of 5,320 positive pairs -"negative_pairs_names.mat": 5320_by_2 cell specifying the image pairs of 5,320 negative pairs # ======================== Evaluation Instruction ========================== # *** Open-Set Face Identification Evaluation ("Face_Identification_Evaluation") *** 1. Extract features of "gallery" images according to the order defined by "gallery_img_ID_pairs.mat", put them in a matrix called "gallery_feature_map" ([image_number]_by_[feature_dimension]), and save the matrix in a mat file named "gallery.mat" 2. Extract features of "mated_pr
最新发布
03-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值