先验、后验、似然、置信
训练样本集D\mathcal{D}D,模型参数θ\mathbf{\theta}θ,根据D\mathcal{D}D估计参数θ\mathbf{\theta}θ
贝叶斯公式:
p(θ∣D)=p(D∣θ)p(θ)p(D)p(\mathbf{\theta} | \mathcal{D}) = \frac{p(\mathcal{D} | \mathbf{\theta}) p(\mathbf{\theta})}{p(\mathcal{D})}p(θ∣D)=p(D)p(D∣θ)p(θ)
p(θ∣D)p(\mathbf{\theta} | \mathcal{D})p(θ∣D):后验概率(posterior)
p(D∣θ)p(\mathcal{D} | \mathbf{\theta})p(D∣θ):似然(likelyhood)
p(θ)p(\mathbf{\theta})p(θ):先验概率(prior)
p(D)p(\mathcal{D})p(D):置信(evidence)