InternVL 微调实践闯关任务
基础任务(完成此任务即完成闯关)
- follow 教学文档和视频使用QLoRA进行微调模型,复现微调效果,并能成功讲出梗图.
- 尝试使用LoRA,或调整xtuner的config,如LoRA rank,学习率。看模型Loss会如何变化,并记录调整后效果(选做,使用LoRA或调整config可以二选一)
未微调前对图片进行推理,模型为InternVL2-2B:
微调:
修改为:
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import AutoTokenizer
from xtuner.dataset import InternVL_V1_5_Dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import InternVL_V1_5
from xtuner.utils import PROMPT_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
path = '/root/model/InternVL2-2B'
# Data
data_root = '/root/InternLM/datasets/CLoT_cn_2000/'
data_path = data_root + 'ex_cn.json'
image_folder = data_root
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 6656
# Scheduler & Optimizer
batch_size = 4 # per_device
accumulative_counts = 4
dataloader_num_workers =