交叉验证方法(cross validation procedure)

交叉验证(CrossValidation)方法思想

以下简称交叉验证(Cross Validation)CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标.常见CV的方法如下:



1).Hold-Out Method


将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训练分类器,然后利用验证集验证模型,记录最后的分类准确率为此Hold-OutMethod下分类器的性能指标.此种方法的好处的处理简单,只需随机把原始数据分为两组即可,其实严格意义来说Hold-Out Method并不能算是CV,因为这种方法没有达到交叉的思想,由于是随机的将原始数据分组,所以最后验证集分类准确率的高低与原始数据的分组有很大的关系,所以这种方法得到的结果其实并不具有说服性.


 

2).K-fold Cross Validation(记为K-CV)



将原始数据分成K(一般是均分),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型,用这K个模型最终的验证集的分类准确率的平均数作为此K-CV下分类器的性能指标.K一般大于等于2,实际操作时一般从3开始取,只有在原始数据集合数据量小的时候才会尝试取2.K-CV可以有效的避免过学习以及欠学习状态的发生,最后得到的结果也比较具有说服性.

 

3).Leave-One-Out Cross Validation(记为LOO-CV)


如果设原始数据有N个样本,那么LOO-CV就是N-CV,即每个样本单独作为验证集,其余的N-1个样本作为训练集,所以LOO-CV会得到N个模型,用这N个模型最终的验证集的分类准确率的平均数作为此下LOO-CV分类器的性能指标.相比于前面的K-CV,LOO-CV有两个明显的优点:



a.每一回合中几乎所有的样本皆用于训练模型,因此最接近原始样本的分布,这样评估所得的结果比较可靠。



b.实验过程中没有随机因素会影响实验数据,确保实验过程是可以被复制的。


LOO-CV的缺点则是计算成本高,因为需要建立的模型数量与原始数据样本数量相同,当原始数据样本数量相当多时,LOO-CV在实作上便有困难几乎就是不显示,除非每次训练分类器得到模型的速度很快,或是可以用并行化计算减少计算所需的时间.


### k-Fold Cross Validation Explained #### Concept of K-Fold Cross Validation K-fold cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. The procedure has a single parameter called 'k' that refers to the number of groups into which a given dataset will be split. Each unique group serves once as a test set while the remaining groups form the training set. The main advantage lies in providing more reliable estimates of model performance by averaging over multiple train/test splits, thus reducing variance compared to using a single validation set[^1]. #### Usage and Implementation Example Below demonstrates implementing k-fold cross-validation utilizing Python's `scikit-learn` library: ```python from sklearn.model_selection import KFold import numpy as np # Sample Data Preparation X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 0, 1, 0]) kf = KFold(n_splits=2) for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] print(f'Training indices:{train_index}, Testing indices:{test_index}') ``` This code snippet initializes a two-fold (`n_splits=2`) cross-validator object named `kf`. For each iteration through the loop, different subsets serve as either training or testing sets based upon index arrays returned during splitting operations performed within `.split()` method calls. Additionally, when evaluating algorithms like those mentioned earlier regarding optimization techniques for handling imbalanced datasets or assessing overall system efficiency across various components, incorporating k-fold strategies ensures comprehensive evaluations without bias towards any particular subset configuration[^2]. --related questions-- 1. How does increasing the value of 'k' affect computational cost? 2. What alternatives exist besides k-fold cross-validation for validating ML models? 3. Can k-fold cross-validation help mitigate issues arising from unbalanced classes? 4. Is there an optimal range recommended for selecting 'k' values? 5. Are certain types of problems better suited for specific numbers of folds?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值