[1911.06750] Unsupervised Attributed Multiplex Network Embedding (arxiv.org)
目录
3 Deep Multiplex Graph Infomax: DMGI
Joint Modeling and Consensus Regularization
Extension to Semi-Supervised Learning
Abstract
多路网络中的节点通过多种类型的关系连接。然而,大多数现有的网络嵌入方法都假设节点之间只存在一种类型的关系。即使对于那些考虑网络多样性的人来说,他们也忽略了节点属性,依靠节点标签进行训练,并且无法对图的全局属性进行建模。
提出DMGI,该方法最大化了图局部补丁之间的互信息,以及整个图的全局表示。设计了一种系统的方法来联合集成来自多个图的节点嵌入,引入1)共识正则化框架,最小化特定关系类型节点嵌入之间的分歧,以及2)通用判别器,区分真实样本,而不考虑关系类型。注意机制推断每个关系类型的重要性,因此可以用于过滤不必要的关系类型作为预处理步骤。
1 Introduction
很多现有的图嵌入方法假设节点之间只有一种类型的关系,然而在现实事件中,节点间关系是多路的。
虽然不同类型的关系可以独立形成不同的图,但这些图是相互关联的,因此可以在各种下游任务中相互帮助。图中的节点可能包含属性信息,这在许多应用中起着重要作用。
首先,以前的方法专注于多图的集成,但忽略了节点属性。其次,即使对于那些考虑节点属性的人,他们需要节点标签进行训练。然而,由于节点标记通常既昂贵又耗时,如果一种方法在没有任何标记的情况下也能显示出具有竞争力的性能,那将是最好的。第三,这些方法中的大多数都无法对图的全局属性进行建模,因为它们是基于基于随机游动的skip-gram模型或图卷积网络(GCN) ,这两种方法都被认为是捕获局部图结构的有效方法。更准确地说,图中“接近”的节点(即在相同的上下文窗口或邻域内)被训练为具有相似的表示,而距离较远的节点即使在结构上相似也没有相似的表示。
考虑到上述限制,作者提出了一种简单而有效的无监督方法来嵌入属性复用网络。方法的核心构建块是Deep Graph Infomax (DGI) ,旨在学习一个节点编码器,该编码器可以最大化图的局部补丁之间的相互信息,以及整个图的全局表示。DGI是提出任务的主要方法,因为它:1)通过GCN自然集成节点属性;2)以完全无监督的方式训练;3)捕获整个图的全局属性;但是将为嵌入单一网络而设计的DGI应用于考虑多种关系类型之间的相互作用以及每种关系类型的重要性的多路网络是具有挑战性的。
因此,提出了一种系统的方法来联合整合来自多种类型节点之间关系的嵌入,从而使它们能够相互帮助,学习到对各种下游任务有用的高质量嵌入。更准确地说,作者引入了共识正则化框架,该框架最大限度地减少了关系类型特定节点嵌入之间的分歧,并引入了通用判别器,该判别器区分真实样本,无论关系类型如何,即基础真值“(图级总结,局部补丁)”对。此外,通过注意机制,可以推断出每个关系类型在生成共识节点嵌入中的重要性,这可以用于过滤不必要的关系类型作为预处理步骤。
2 DGI
DGI旨在学习每个节点的低维向量表示,使得图级(全局)汇总表示s与局部patch表示{h1; h2;… hn}之间的平均互信息(MI)最大。每个hi都被期望捕获整个图的全局属性.
尽管它很有效,但DGI是为单属性网络设计的,因此将其应用于多路网络并不直接。作为DGI在复用属性网络中的一种朴素扩展,我们可以将DGI独立应用于由每种关系类型组成的每个图,然后计算从每个图中获得的嵌入的平均值,从而得到最终的节点表示。然而,我们认为这不能模拟网络的多样性,因为来自不同关系类型的节点嵌入之间的相互作用没有被捕获。
3 Deep Multiplex Graph Infomax: DMGI

作者提出了一种无监督的方法,为带有属性的多路网络生成嵌入。作者先描述如何独立于建模属于每种关系类

DMGI是一种无监督的多路网络嵌入方法,它结合了节点属性和多种关系类型。通过最大化图局部补丁与全局表示之间的互信息,DMGI能捕获全局属性。文章提出了一种联合集成不同关系类型节点嵌入的策略,包括共识正则化和通用判别器,同时利用注意机制推断关系类型的重要性。此外,DMGI还可扩展到半监督学习场景。
最低0.47元/天 解锁文章
1126

被折叠的 条评论
为什么被折叠?



