不定积分模拟计算机
用乘法器,除法器,加法器,减法器可以按照公式进行组合连接,进而计算出积分。
资料下载:
链接:https://pan.baidu.com/s/1B8KcjMkSfly8Rsky0bHvyQ?pwd=y656
提取码:y656
链接:https://pan.baidu.com/s/1a0iUGL4omXr7R6-Zap5idA?pwd=6g6o
提取码:6g6o
「不定积分计算电路」https://www.aliyundrive.com/s/eSC6MpKk2bf
微云文件分享:不定积分计算电路下载地址:https://share.weiyun.com/bdYRuFzR
微云文件分享:不定积分计算电路下载地址:https://share.weiyun.com/bdYRuFzR
https://115.com/s/swn015i36zv?password=tc66#
访问码:tc66
推导过程可参见《微积分学导论》,1958年版,曹一华,江体乾编译
例1.
√x
e
dx
√x
2
设x=t ,则有
√x t
e e t t √x
dx= 2tdt=2 e dt=2e +C=2e +C
√x t
例4.
dx dx d(x+3)
dx= = =arctg9x+3)+C
2 2 2
x +6x+10 (x+3) +1 (x+3) +1
例1.
3 2 3 2
(4x -2x -5x-3)dx=4 x dx- 2x dx+ 5xdx- 3dx
4 3 2
x x x
=4 -2 +5 -3x+C
4 3 2
2
2 3 x
=x- x +5 -3x+C
3 2
例13.
3 2 2
tg xdx= tg xtgxdx= (sec x-1)tgxdx=
2
= tgxsec xdx- tgxdx= tgx dtgx- tgx dx use利用公式6.12
2
tg x
= +lncosx+C 利用公式6.4及本节例9)
x
例9.
sinx d(cosx)
tg xdx= dx= =-ln cosx +C
cosx cosx
指数函数的积分
x
d(a ) x
=a lna
dx
x
1 d(a ) x
=a
lna dx
x
a
d( ) x
lna =a
dx
x
X a
a dx= +C
lna
特别的,上式中当a=c时,得
x x
e dx=e +C
积分表
kdx=kx+C
μ 1 μ-1
x dx= x +C (μ≠-1)
μ+1
dx/x=ln│x│+C
x x
a dx=a /lna+C
当a=e时,
x x
e dx=e +C
cosxdx=sinx +C
sinxdx=-cosx +C
2
sec xdx=tgx +C
2
csc xdx=-ctgx +C
secxtgxdx=secx +C
cscxctgxdx=-cscx +C
dx
=arcsinx+C=-arccosx +C
2
1-x
dx
=arctgx+C=-arcctgx +C
2
1-x
shxdx=chx +C
chxdx=shx +C
m m+1
x dx=x /(m+1)+C
dx/x= d(-x)/(-x)=log│x│+c
x x
a dx=a /log a +c
cosxdx=sinx +C
sinxdx=-cosx +C
2
dx/cos x=tan x +c
2 ±arc sinx+c
dx/ 1-x ={
±arc cosx+c
2
dx/ (x +1) =arc tanx+c
chxdx=shx+c
shxdx=chx+c
2
dx/ch x=thx+c
2
dx/ x -1 =±argchx+c
2
dx/(1-x )=±argthx+c
推导参见《理化用高等算学》,J.W.Mellor著,徐朔均译,商务印书馆1912年出版
y=sinhx dy/dx=coshx coshxdx=sinhx
y=coshx dy/dx=sinhx sinhxdx=coshx
2
y=tanhx dy/dx=sech x sechxdx=tanx
2 2
y=cothx dy/dx=-cosech x cosech xdx=-cothx
2 2
y=sechx dy/dx=-sinhx/cosh x (sinhx/cosh x)dx=-sechx
2 2
y=cosechx dy/dx=-coshx/sinh x (coshd/sinh x)dx=-cosechx
2 2
y=arcsinh x dy/dx=1/ x +1 dx/ x +1 =arcsinh x
2 2
y=arccosh x dy/dx=1/ x -1 dx/ x -1 =arccosh x
2 2
y=arctanh x dy/dx=1/(1-x ), x<1 dx/(1-x ) =arctanh x
2 2
y=arccoth x dy/dx=1/(x -1), x<1 dx/(x -1) =arccoth x
2 2
y=arcsech x dy/dx=1/(x 1-x ) dx/(x 1-x ) =-arcsech x
2 2
y=arc cosech x dy/dx=1/(x x +1) dx/(x x +1 ) =-arc cosech x
u n-1 n n+1
u=x du/dx=nx x dx=x /(n+1)
x x n x x
u=a du/dx=a log a a dx=a /log a
e e
x x n x x
u=e du/dx=e e dx=e
n
u=log x du/dx=1/x dx/x=log x
e e
u=sinx du/dx=cosx cosaxdx=sinax/a
u=cosx du/dx=-sinx sinaxdx=-cosax/a
2 2
u=tanx du/dx=sec x sec axdx=-tanax/a
2 2
u=cotx du/dx=-cosec x cosec axdx=-cotax/a
2 2
u=secx du/dx=sinx/cos x (sinx/csc x)dx=secx
2 2
u=cosecx du/dx=cosx/sin x (cosx/sin x)dx=-cosecx
2
y=arcsin x dy/dx=1/ 1-x
2 =arc sin (x/a)
} dx/ a -x={
2 =-arccos (x/a)
y=arccos x dy/dx=-1/ 1-x
2
u=arctan x dy/dx=1/ (1+x )
2 =[arc tan (x/a)]/a
} dx/ a +x={
2 =-[arc cot (x/a)]/a
y=arccos x dy/dx=-1/(1+x )
2
u=arc sec x du/dx=1/x x -1
2 =[arcsec (x/a)]/a
} dx/(x x -a={
2 =-[arc cosec (x/a)]/a
u=arc cosec x du/dx=-1/x x -1
u=arc vers x du/dx=1/ 2x-x
2 =a