声明:本人所用操作系统为Ubuntu kylin16.04LST,编辑器为Vim,Tensorflow版本为0.8,python版本为2.7。
一.读取数据
数据
数据文件:np_x1.txt
np_y1.txt
链接: https://pan.baidu.com/s/1c1M1PQC 密码: ysg9读数据
#!/usr/bin/python
# coding=utf-8
import numpy as np
# Make up some real data
f_x = open('np_x1.txt')
x_data= np.loadtxt(f_x,unpack='true')
x_data.shape = 400,1
f_x.close()
f_y = open('np_y1.txt')
y_data = np.loadtxt(f_y,unpack='true')
y_data.shape = 400,1
f_y.close()
二.模型的建立与训练
#!/usr/bin/python
# coding=utf-8
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def net_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# read data
f_x = open('np_x1.txt')
x_data= np.loadtxt(f_x,unpack='true')
x_data.shape = 400,1
f_x.close()
f_y = open('np_y1.txt')
y_data = np.loadtxt(f_y,unpack='true')
y_data.shape = 400,1
f_y.close()
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = net_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = net_layer(l1, 10, 1, activation_function=None)
# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess= tf.Session()
sess.run(init)
# plot data
fig = plt.figure()
ax = fig.add_subplot(1,1,1) #图像为1行1列,第一个
p = ax.scatter(x_data, y_data) #散点图
plt.ion() #打开绘图交互模式
plt.show()
for i in range(10000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(1)
本文介绍如何利用TensorFlow和Python实现简单的数据拟合任务。通过加载外部数据集并构建神经网络模型来预测输出值,同时展示了如何训练模型及可视化训练过程。
94

被折叠的 条评论
为什么被折叠?



