http://www.inference.vc/everything-that-works-works-because-its-bayesian-2/
Why do Deep Nets Generalise?
HINT: because they are really just an approximation to Bayesian machine learning.
深度网络的泛化能力是怎么来的?
目前理论界还是没有达成一致性认识。甚至得出相反的结论!
Understanding deep learning requires rethinking generalization
https://arxiv.org/abs/1611.03530
上面这篇文献说明了网络模型强大的过拟合能力,网络的泛化能力不是来自于网络模型本身。
It appears to be that stochastic gradient descent may be responsible.
网络的泛化能力有可能来自于 SGD,下面这篇文献说明 SGD biases learning towards flat minima, rather than sharp minima,为什么 flat minima 对应更好的泛化能力了? 个人认为它覆盖的参数空间范围更大一些。
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
https://arxiv.org/abs/1609.04836
但是下面的文献得出相反的结论: claim sharp minima can generalize well
Sharp Minima Can Generalize For Deep Nets
https://arxiv.org/abs/1703.04933
Everything that works works because it is Bayesian.
本文探讨了深度学习模型的强大泛化能力来源。虽然理论界尚未形成统一观点,但研究指出,模型的泛化能力可能源于随机梯度下降法(SGD)倾向于找到平坦最小值而非尖锐最小值。此外,文章还综述了几篇关键文献,揭示了泛化能力与模型最小值形状之间的复杂关系。
990

被折叠的 条评论
为什么被折叠?



