题目:
For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as A K,that is A concatenated K times, for some string A. Of course, we also want to know the period K.
输入:
The input consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S.The second line contains the string S. The input file ends with a line, having the
number zero on it.
输出:
For each test case, output "Test case #" and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case.
样例输入:
3
aaa
12
aabaabaabaab
0
样例输出:
Test case #1
2 2
3 3
Test case #2
2 2
6 2
9 3
12 4
这题就是给出一串字符,求前缀是周期串的长度,并且求出这个周期串有几个最小周期。例如abaaba是一个周期串,最小周期串是aba,一共有两个最小周期。
这道题主要是关于next数组的应用,以第二组案例为例。
i 0 1 2 3 4 5 6 7 8 9 10 11 12
a[i] a a b a a b a a b a a b
net[i] -1 0 1 0 1 2 3 4 5 6 7 8 9
可以看出最小周期的长度时i-next[i],所以首先要判断i%(i-next[i])==0,并且题目中说这个长度K是大于1的,所以要满足i/(i-next[j])>1 (代码中的next数组用net表示,因为用next会显示标识符不明确)
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=1000005;
char s[maxn];
int net[maxn];
int n;
void getnet()
{
net[0]=-1;
int j=0;
int k=-1;
while(j<n)
{
if(k==-1||s[j]==s[k])
{
++j;
++k;
net[j]=k;
}
else
k=net[k];
}
}
int main()
{
int cas=1;
while(scanf("%d",&n)!=EOF &&n)
{
scanf("%s",s);
getnet();
printf("Test case #%d\n",cas++);//不要忘记这一句
for(int i=1;i<=n;i++)
{
int j=i-net[i];//最小周期的长度
if(i%j==0&&i/j>1)//如果满足条件,就输出周期的最长度和最小周期的个数
{
printf("%d %d\n",i,i/j);
}
}
printf("\n");
}
return 0;
}