关于自定义数据类型,http://book.douban.com/annotation/17067489/ 一文中给出了一个比较清晰的说明和解释。
以wordCount为例子
定义自己的数据类型Http类
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class Http implements WritableComparable<Http>
{
public Http(){ }
private String value;
public Http(String value)
{
setValue(value);
}
public String getValue()
{
return value;
}
public void setValue(String value)
{
this.value = value;
}
public void readFields(DataInput in) throws IOException
{
value = in.readUTF();
}
public void write(DataOutput out) throws IOException
{
out.writeUTF(value);
}
public int compareTo(Http http)
{
return (value.compareTo(http.value));
}
@Override
public int hashCode()
{
final int prime = 31;
int result = 1;
result = prime * result + ((value == null) ? 0 : value.hashCode());
return result;
}
@Override
public boolean equals(Object obj)
{
if (!(obj instanceof Http))
return false;
Http other = (Http)obj;
return this.value.equals(other.value);
}
@Override
public String toString()
{
return value;
}
}
编写wordcount程序
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCountEntry
{
public static class TokenizerMapper extends
Mapper<LongWritable, Http, Http, IntWritable>
{
private final static IntWritable one = new IntWritable(1);
private Http word = new Http();
public void map(LongWritable key, Http value, Context context)
throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())
{
word.setValue(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends
Reducer<Http, IntWritable, Http, IntWritable>
{
private IntWritable result = new IntWritable();
public void reduce(Http key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException
{
int sum = 0;
for (IntWritable val : values)
{
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args)
throws IOException, InterruptedException, ClassNotFoundException
{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2)
{
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Path input = new Path(args[0]);
Path output = new Path(args[1]);
Job job = new Job(conf, "word count");
job.setJarByClass(WordCountEntry.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Http.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, input);
FileOutputFormat.setOutputPath(job, output);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
编写mrUnit测试用例进行mapreduce程序测试
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
import org.junit.Before;
import org.junit.Test;
import com.geo.dmp.WordCountEntry.IntSumReducer;
import com.geo.dmp.WordCountEntry.TokenizerMapper;
public class WordCountEntryTest
{
private MapDriver<LongWritable, Http, Http, IntWritable> mapDriver;
private ReduceDriver<Http, IntWritable, Http, IntWritable> reduceDriver;
@Before
public void setUpBeforeClass() throws Exception
{
TokenizerMapper tm = new TokenizerMapper();
mapDriver = MapDriver.newMapDriver(tm);
IntSumReducer isr = new IntSumReducer();
reduceDriver = ReduceDriver.newReduceDriver(isr);
}
@Test
public void TokenizerMapperTest()
{
mapDriver.withInput(new LongWritable(), new Http("01a55\tablsd"));
mapDriver.withOutput(new Http("01a55"), new IntWritable(1));
mapDriver.withOutput(new Http("ablsd"), new IntWritable(1));
mapDriver.runTest();
}
@Test
public void IntSumReducerTest()
{
List<IntWritable> values = new ArrayList<IntWritable>();
values.add(new IntWritable(1));
values.add(new IntWritable(1));
reduceDriver.withInput(new Http("01a55"), values);
reduceDriver.withOutput(new Http("01a55"), new IntWritable(2));
reduceDriver.runTest();
}
}