自定义类型
必须实现Writable接口
而且要指定map,reduce函数的输出类型
job.setMapOutputValueClass(KpiWritable.class);
job.setOutputValueClass(KpiWritable.class);
package mapreduce;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
public class KpiApp {
/**
* hadoop 自定义类型
*/
static final String INPUT_PATH = "hdfs://chaoren:9000/wlan";
static final String OUT_PATH = "hdfs://chaoren:9000/wlanout";
public static void main(String[] args) throws Exception{
final Job job = new Job(new Configuration(), KpiApp.class.getSimpleName());
//1.1 指定输入文件路径
FileInputFormat.setInputPaths(job, INPUT_PATH);
//指定哪个类用来格式化输入文件
job.setInputFormatClass(TextInputFormat.class);
//1.2指定自定义的Mapper类
job.setMapperClass(MyMapper.class);
//指定输出<k2,v2>的类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(KpiWritable.class);
//1.3 指定分区类
job.setPartitionerClass(HashPartitioner.class);
job.setNumReduceTasks(1);
//1.4 TODO 排序、分区
//1.5 TODO (可选)合并
//2.2 指定自定义的reduce类
job.setReducerClass(MyReducer.class);
//指定输出<k3,v3>的类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(KpiWritable.class);
//2.3 指定输出到哪里
FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));
//设定输出文件的格式化类
job.setOutputFormatClass(TextOutputFormat.class);
//把代码提交给JobTracker执行
job.waitForCompletion(true);
}
static class MyMapper extends Mapper<LongWritable, Text, Text, KpiWritable>{
/**
* LongWritable, 偏移量 map输入k1
* Text, 一行文本 map输入v1
* Text, 表示整个文件中不同的手机号码 map输出k2
* KpiWritable 表示该手机号在不同时段的流量的集合 map输出v2s
*/
protected void map(LongWritable key, Text value, org.apache.hadoop.mapreduce.Mapper<LongWritable,Text,Text,KpiWritable>.Context context) throws IOException ,InterruptedException {
final String[] splited = value.toString().split("\t");//一行文本value被切割
final String msisdn = splited[1]; //第一个字段为手机号
final Text k2 = new Text(msisdn); //因为要把第一个字段作为输出键,转为hadoop类型
final KpiWritable v2 = new KpiWritable(splited[6],splited[7],splited[8],splited[9]);//通过自定义类型获取字段。
context.write(k2, v2);
};
}
static class MyReducer extends Reducer<Text, KpiWritable, Text, KpiWritable>{
/**
* @param k2 表示整个文件中不同的手机号码
* @param v2s 表示该手机号在不同时段的流量的集合
*/
protected void reduce(Text k2, java.lang.Iterable<KpiWritable> v2s, org.apache.hadoop.mapreduce.Reducer<Text,KpiWritable,Text,KpiWritable>.Context context) throws IOException ,InterruptedException {
long upPackNum = 0L;
long downPackNum = 0L;
long upPayLoad = 0L;
long downPayLoad = 0L;
for (KpiWritable kpiWritable : v2s) {
upPackNum += kpiWritable.upPackNum;
downPackNum += kpiWritable.downPackNum;
upPayLoad += kpiWritable.upPayLoad;
downPayLoad += kpiWritable.downPayLoad;
}
final KpiWritable v3 = new KpiWritable(upPackNum+"", downPackNum+"", upPayLoad+"", downPayLoad+"");
context.write(k2, v3);
};
}
}
class KpiWritable implements Writable{ //自定义类型必须实现Writable接口!!!
long upPackNum;
long downPackNum;
long upPayLoad;
long downPayLoad;
public KpiWritable(){}
public KpiWritable(String upPackNum, String downPackNum, String upPayLoad, String downPayLoad){
this.upPackNum = Long.parseLong(upPackNum);
this.downPackNum = Long.parseLong(downPackNum);
this.upPayLoad = Long.parseLong(upPayLoad);
this.downPayLoad = Long.parseLong(downPayLoad);
}
@Override
public void readFields(DataInput in) throws IOException {
this.upPackNum = in.readLong();
this.downPackNum = in.readLong();
this.upPayLoad = in.readLong();
this.downPayLoad = in.readLong();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upPackNum);
out.writeLong(downPackNum);
out.writeLong(upPayLoad);
out.writeLong(downPayLoad);
}
@Override
public String toString() {
return upPackNum + "\t" + downPackNum + "\t" + upPayLoad + "\t" + downPayLoad;
}
}