弗洛伊德

本文探讨了在CCF201712竞赛中遇到的赋权图问题,作者重点解析了弗洛伊德算法的应用,尽管未能完全解决问题,但深入分析了该算法的实现与思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ccf201712-4,赋权图的变种,没想明白,只写了 弗洛伊德算法,得了30分。

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

int matrice[520][520];
int path[520][520];
int dis[520];


int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    int a, b, c, d;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            matrice[i][j] = 200000;
            path[i][j] = j;
        }
    }
    for (int i = 1; i <= m; i++)
    {
        scanf("%d%d%d%d", &a, &b, &c, &d);
        matrice[b][c] = d;
        matrice[c][b] = d;
        dis[b + c] = a;
    }
    int i, j, k;
    for (k = 1; k <= n; k++)
    {
        for (i = 1; i <= n; i++)
        {
            for (j = 1; j <= n; j++)
            {
                if (matrice[i][j] > matrice[i][k] + matrice[k][j])
                {
                    matrice[i][j] = matrice[i][k] + matrice[k][j];
                    path[i][j] = path[i][k];
                }
            }
        }
    }
    //k = path[1][n];
    //printf("1\n");
    //while (k != n)
    //{
        //printf("%d\n",k);
    //  k = path[k][n];
    //}
    //printf("%d\n", n);

    printf("%d\n", matrice[1][n]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值