参考文献:汪道寅,基于SIFT图像配准算法的研究,2011年5月,硕士学位论文,中国科学技术大学.
一、基于SIFT算法的特征图像配准过程:1)特征的检测;2)特征描述;3)特征匹配
1. 特征检测过程:
1)生成图像尺度空间;
(1)生成图像的高斯金字塔。
Lindeberg证明高斯卷积核是实现尺度变换的唯一线性变换核,一幅图像在尺度空间为图像和可变高斯核函数的卷积(高斯金字塔Laplacian of Gaussian, LOG算子)
2)检测尺度空间中的局部极值点:
(1)生成图像的差分高斯金字塔
图像高斯金字塔的相邻层的差值。
Mikolajczyk在2002年发现通过算子 获取的局部极值点,比采用梯度、Hessian矩阵和Harris角点等方法获取的局部极值点稳定
(2)提取候选极值点
(3)筛选极值点:抑制低对比度点和去除边缘响应点
低对比度点的抑制:剔除响应值小于给定阈值的点
去除边缘响应点:图像边缘假特征点在边缘交叉处的主曲率较大,而在垂直方向上主曲率较小(Hessian矩阵)
3. 特征描述:
1)计算每个极值点的主方向;
采用梯度方向直方图表示以特征点为中心的邻域窗口内特征点邻域像素的梯度方向统计值
梯度方向范围为0度-360度、每10度在直方图中表示一个柱,共36柱
特征点可以有一个主方向和多个辅方向:梯度方向直方图的峰值为特征点主方向;梯度方向直方图中峰值为主峰值能量80%的峰值方向作为辅方向。
2)对极值点为中心的区域进行直方图梯度方向统计,生成特征描述子
以特征点为中心取16*16的窗口(特征点行列不取),采用高斯加权
在4*4的图像小块上计算8个方向的梯度方向直方图,绘制每个梯度方向的累加值,形成一个种子点
一个特征点由4*4共16个种子点组成、特征描述子由所有子块的