code:
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 5 09:59:55 2019
@author: Administrator
"""
import keras
import numpy as np
import matplotlib.pyplot as plt
#按顺序构成的模型
from keras.models import Sequential
#全连接层
from keras.layers import Dense, Activation
from keras.optimizers import SGD
#
x_data = np.linspace(-0.5, 0.5, 200)
noise = np.random.normal(0, 0.02, x_data.shape)
y_data = np.square(x_data) + noise
#显示随机点
plt.scatter(x_data, y_data)
plt.show()
#构建一个顺序模型
model = Sequential()
#在模型中添加一个全连接层
#model.add(Dense(units=1, input_dim=1))
#1-10-1
model.add(Dense(units=10, input_dim=1,activation='tanh'))
#model.add(Activation('tanh'))
model.add(Dense(units=1,activation='tanh'))
#model.add(Activation('tanh'))
#sgd:随机梯度下降法
#mse:均方误差
#定义优化算法
sgd = SGD(lr=0.3)
model.compile(optimizer=sgd, loss='mse')
#训练3001个批次
for step in range(3001):
#每次训练一个批次
cost = model.train_on_batch(x_data, y_data)
#每500个batch打印一次cost值
if step % 500 == 0:
print('cost: ', cost)
#打印权值和偏置值
W,b = model.layers[0].get_weights()
print('W: ', W, 'b: ', b)
#把x_data 输入网络中, 得到预测值y_pred
y_pred = model.predict(x_data)
#显示随机点
plt.scatter(x_data, y_data)
#显示预测结果
plt.plot(x_data, y_pred, 'r-', lw=3)
plt.show()
结果:
cost: 0.064330176
cost: 0.00430306
cost: 0.0011232587
cost: 0.0005117228
cost: 0.00044209335
cost: 0.00040804088
cost: 0.00041893712
W: [[ 0.5783164 -0.9410055 1.6641765 -0.7725851 0.05985442 0.20194814
0.14009696 0.36796477 0.552523 -0.17267904]] b: [ 0.12648003 0.30630904 0.66315216 0.19575058 -0.11367042 0.22501782
0.24458379 0.0840651 -0.0173044 0.122155 ]