import keras
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Activation
from keras.optimizers import SGD
x_data = np.linspace(-0.5,0.5,200)
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data) + noise
plt.scatter(x_data,y_data)
plt.show()

model = Sequential()
model.add(Dense(units=10,input_dim=1,activation='relu'))
model.add(Dense(units=1,activation='relu'))
sgd = SGD(lr=0.3)
model.compile(optimizer=sgd,loss='mse')
for step in range(6001):
cost = model.train_on_batch(x_data,y_data)
if step % 500 == 0:
print('cost:',cost)
W,b = model.layers[0].get_weights()
print('W:',W,'b:',b)
y_pred = model.predict(x_data)
plt.scatter(x_data,y_data)
plt.plot(x_data,y_pred,'r-',lw=3)
plt.show()
