import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.layers.recurrent import SimpleRNN
from keras.optimizers import Adam
input_size = 28
time_steps = 28
cell_size = 50
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train = x_train/255.0
x_test = x_test/255.0
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
model = Sequential()
model.add(SimpleRNN(
units = cell_size,
input_shape = (time_steps,input_size),
))
model.add(Dense(10,activation='softmax'))
adam = Adam(lr=1e-4)
model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=64,epochs=10)
loss,accuracy = model.evaluate(x_test,y_test)
print('test loss',loss)
print('test accuracy',accuracy)
