import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten
from keras.optimizers import Adam
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train = x_train.reshape(-1,28,28,1)/255.0
x_test = x_test.reshape(-1,28,28,1)/255.0
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
model = Sequential()
model.add(Convolution2D(
input_shape = (28,28,1),
filters = 32,
kernel_size = 5,
strides = 1,
padding = 'same',
activation = 'relu'
))
model.add(MaxPooling2D(
pool_size = 2,
strides = 2,
padding = 'same',
))
model.add(Convolution2D(64,5,strides=1,padding='same',activation = 'relu'))
model.add(MaxPooling2D(2,2,'same'))
model.add(Flatten())
model.add(Dense(1024,activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(10,activation='softmax'))
adam = Adam(lr=1e-4)
model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=64,epochs=10)
loss,accuracy = model.evaluate(x_test,y_test)
print('test loss',loss)
print('test accuracy',accuracy)
